| A. | 1 | B. | 2 | C. | -1 | D. | 0 |
分析 首先根据题干条件解得f(0),f(-1)和f(-1)的值,然后根据对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2)可以判断f(0)、f(-1)和f(1)不能相等,据此解得答案
解答 解:∵对任何x∈R均有f(x3)=[f(x)]3,
∴f(0)=(f(0))3,解得f(0)=0,1或-1,
f(-1)=(f(-1))3,解得f(-1)=0,1或-1,
f(1)=(f(1))3,解得f(1)=0,1或-1,
∵对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2),
∴f(0)、f(-1)和f(1)的值只能是0、-1和1中的一个,
∴f(0)+f(-1)+f(1)=0,
故选D.
点评 本题主要考查函数的值的计算,解答本题的关键是根据题干条件判断f(0)、f(-1)和f(1)不能相等.
科目:高中数学 来源: 题型:选择题
| A. | 若a>b,则$\frac{1}{a}$>$\frac{1}{b}$ | B. | 若a>b,则$\frac{1}{a}$<$\frac{1}{b}$ | C. | 若|a|>b,则a2>b2 | D. | 若a>|b|,则a2>b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -17 | B. | -2 | C. | 2 | D. | 17 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{8}$ | B. | $\frac{15}{8}$ | C. | $\frac{3}{7}$ | D. | $\frac{17}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com