精英家教网 > 高中数学 > 题目详情

【题目】已知有穷数列A.定义数列A伴生数列B,其中),规定.

1)写出下列数列的伴生数列

12345

111.

2)已知数列B伴生数列C,…,,…,,且满足2,…,n.

i)若数列B中存在相邻两项为1,求证:数列B中的每一项均为1

)求数列C所有项的和.

【答案】1)①11111100012)(i)证明见解析()所有项的和n3的倍数)

【解析】

1)根据“伴生数列”的定义求解即可;

2)(i)设存在,使得,讨论,结合“伴生数列”的定义证明即可;

)利用反证法得出不可能存在,再对数列的前三项的值进行讨论,当时,得出所有项的和;当时,得出与已知矛盾;当时,结合“伴生数列”的定义得出所有项的和,同理可以得出当时,所有项的和.

解:(1)①11111

10001.

2)(i)由题意,存在,使得.

,即时,.

于是.

所以,所以..

依次类推可得3,…,.

所以2,…,n.

,由.

于是.所以.

依次类推可得.

所以2,…,n.

综上可知,数列B中的每一项均为1.

)首先证明不可能存在使得.

若存在使得

.

与已知矛盾.

所以不可能存在.

由此及()得数列的前三项的可能情况如下:

时,由(i)可得2,…,n.

于是2,…,n.

所以所有项的和.

时,

此时与已知矛盾.

时,.

于是.

于是

于是,且.

依次类推n恰是3的倍数满足题意.

所以所有项的和.

同理可得时,

当且仅当n恰是3的倍数时,满足题意.

此时所有项的和.

综上,所有项的和n3的倍数).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的部分图象如图所示

(1)的最小正周期及解析式;

(2)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥SABCD中,侧面SCD为钝角三角形且垂直于底面ABCDCDSD,点MSA的中点,AD//BC,∠ABC90°,ABADBCa

1)求证:平面MBD⊥平面SCD

2)若∠SDC120°,求三棱锥CMBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 t为参数),若以O为极点,x轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为.

1)求曲线C的直角坐标方程及直线l的普通方程;

2)将所得曲线C向右平移1个单位长度,再将曲线C上的所有点的横坐标变为原来的2倍,得到曲线,求曲线上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对某对象连续实施两次变换后的结果就是变换前的对象,那么我们称这种变换为回归变换.如:对任意一个实数,变换:取其相反数.因为相反数的相反数是它本身,所以变换取实数的相反数是一种回归变换.有下列3种变换:

①对,变换:求集合A的补集;

②对任意,变换:求z的共轭复数;

③对任意,变换:kb均为非零实数).

其中是回归变换的是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中勾股容方问题:今有勾五步,股十二步,问勾中容方几何?魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形.该矩形长为,宽为内接正方形的边长.由刘徽构造的图形还可以得到许多重要的结论,如图3.设为斜边的中点,作直角三角形的内接正方形对角线,过点于点,则下列推理正确的是(

①由图1和图2面积相等得

②由可得

③由可得

④由可得

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确的是

A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟

B. 第二种生产方式比第一种生产方式的效率更高

C. 这40名工人完成任务所需时间的中位数为80

D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的普通方程为:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,正方形的顶点都在上,且逆时针依次排列,点的极坐标为

1)写出曲线的参数方程,及点的直角坐标;

2)设为椭圆上的任意一点,求:的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了实施“科技下乡,精准脱贫”战略,某县科技特派员带着三个农业扶贫项目进驻某村,对仅有的四个贫困户进行产业帮扶.经过前期走访得知,这四个贫困户甲、乙、丙、丁选择三个项目的意向如下:

扶贫项目

贫困户

甲、乙、丙、丁

甲、乙、丙

丙、丁

若每个贫困户只能从自己已登记的选择意向中随机选取一项,且每个项目至多有两个贫困户选择,则甲乙两户选择同一个扶贫项目的概率为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案