精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=sinx+acosx,其中一条对称轴为x=$\frac{π}{4}$,则实数a=1.

分析 利用辅助角公式化简函数f(x)为一个三角函数的形式,利用图象关于直线的对称,建立条件关系即可.

解答 解:函数f(x)=acosx+sinx=$\sqrt{1+{a}^{2}}$sin(x+θ),其中tanθ=a,
其图象关于直线x=$\frac{π}{4}$对称,
所以θ+$\frac{π}{4}$=$\frac{π}{2}$+kπ,
θ=$\frac{π}{4}$+kπ,
所以a=tanθ=tan($\frac{π}{4}$+kπ)=tan$\frac{π}{4}$=1,
故答案为:1.

点评 本题主要考查三角函数的最值的求解,利用辅助角公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.两条曲线的极坐标方程分别为C1:ρ=1与C2:ρ=2cos(θ+$\frac{π}{3}$),它们相交于A,B两点.
(Ⅰ)写出曲线C1的参数方程和曲线C2的普通方程;
(Ⅱ)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知D是以点A(4,1)、B(-1,-6)、C(-3,2)为顶点的三角形区域(包括边界及内部).
(1)写出表示区域D的不等式组;
(2)设点B(-1,-6)、C(-3,2)在直线4x-3y-a=0的异侧,求a的取值范围;
(3)若目标函数z=kx+y(k<0)的最小值为-k-6,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正项等比数列{an}的前n项和为Sn,且S5=6+7$\sqrt{2}$,S7-S2=12+14$\sqrt{2}$,则公比q为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若对于任意的x∈R,x2-ax+4≥0都成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知地球的半径为R,在南纬α的纬度圈上有A、B两点,若沿纬度圈这两点间的距离为πRcosα,则A、B两点间的球面距离为(π-2α)R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.11100-1的结果的末尾连续零的个数为(  )
A.7B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面PDC,E为棱PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:平面PAD⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为(  )
A.$\sqrt{2}-1$B.$\frac{1}{2}$C.$\sqrt{3}-1$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案