精英家教网 > 高中数学 > 题目详情
已知函数f(x)=asinx•cosx-
3
acos2x+
3
2
a+b(a>0)
(1)当a=2,b=0时,写出函数f(x)的单调递减区间;
(2)设x∈[0,
π
2
],若f(x)的最小值是-2,最大值是
3
,求实数a,b的值.
考点:三角函数中的恒等变换应用,三角函数的最值
专题:三角函数的图像与性质
分析:(1)利用二倍角公式和两角和公式对函数解析式化简,根据正弦函数的性质求得函数的单调减区间.
(2)利用二倍角公式和两角和公式对函数解析式化简,根据x的范围和正弦函数的单调性确定函数的最大和最小值的表达式,列方程求得a和b.
解答: 解:(1)f(x)=2sinxcosx-2
3
cos2x+
3
=sin2x-
3
cos2x=2sin(2x-
π
3
),
由2kπ+
π
2
≤2x-
π
3
≤2kπ+
2
,解得kπ+
5
12
≤x≤kπ+
6
,k∈Z,
∴函数的单调减区间为[kπ+
5
12
,kπ+
6
](k∈Z).
(2)f(x)=a(
1
2
sin2x-
3
2
cos2x)+b=asin(2x-
π
3
)+b,
∵x∈[0,
π
2
],
∴2x-
π
3
∈[-
π
3
3
],
∴sin(2x-
π
3
)∈[-
3
2
,1],
a+b=
3
-
3
a
2
+b=-2
a+b=-2
-
3
2
a+b=
3

求得a=2,b=
3
-2,或a=-2,a=
3
+2.
点评:本题主要考查了三角函数恒等变换的应用,三角函数图象与性质.第2问中注意对a大于0和a小于0分情况求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-a)(x-b),其中0<a<b.
(1)设函数y=f(x)在点A(s,f(s)),B(t,f(t))处取得极值,且s<t.求证:
①0<s<a<t<b;
②线段AB的中点C在曲线y=f(x)上;
(2)若a+b<2
2
,问:过原点且与曲线y=f(x)相切的两条直线是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数y=
2
x-1
在区间[2,6]上的单调性,并求该函数最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某研究机构对高二文科学生的记忆力x和判断力y进行统计分析,得下表数据
X 6 8 10 12
Y 2 3 5 6
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
y
=
b
x+
a

(3)试根据(2)求出的线性回归方程,预测记忆力为14的同学的判断力.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:α∈(0,
π
2
),sinα=
3
5
求值:
(Ⅰ)tanα;
(Ⅱ)cos2α+sin(α+
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanx=2
(1)求
sinx-cosx
sinx+cosx
的值
(2)求cos2x-sin2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点M(-2,0),N(2,0),且圆心C在直线y=x上.
(Ⅰ)求圆C的方程;
(Ⅱ)若过点(2,1)的直线l1与圆C相切,求直线l1的方程;
(Ⅲ)若直线l2:y=kx+3与圆C交于A,B两点,在圆C上是否存在一点Q,使得
OQ
=
OA
+
OB
,若存在,求出此时直线l2的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式ax2+bx+1>0的解集为(-1,
1
3
),求不等式bx2+ax<-9的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,下列三角表达式:①sin(A+B)+sinC,②cos(B+C)+cosA,③tan
A+B
2
tan
C
2
,④cos
A+B
2
cos
C
2
,其中恒为定值的有
 
(请将你认为正确的式子的序号都填上).

查看答案和解析>>

同步练习册答案