精英家教网 > 高中数学 > 题目详情
1.某几何体的三视图如图所示,其体积为(  )
A.$\frac{10}{3}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

分析 由已知中的三视图,可知该几何体是一个以边长为2的等腰直角三角形为底面的三棱柱,切去了一个以边长为2的等腰直角三角形为底面的三棱锥.其体积为V=V三棱柱-V三棱锥

解答 解:由已知中的三视图,可知该几何体是一个以边长为2的等腰直角三角形为底面的三棱柱,其高为2,切去了一个以边长为2的等腰直角三角形为底面的三棱锥,其高为1,
∴V三棱柱=2×2=4,
${V}_{三棱锥}=\frac{1}{3}×2×2×\frac{1}{2}×1=\frac{2}{3}$.
故得该几何体的体积为V=V三棱柱-V三棱锥=4-$\frac{2}{3}=\frac{10}{3}$,
故选A

点评 本题考查的知识点是由三视图求体积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在四棱柱ABCD-A1B1C1D1中,底面ABCD为矩形,AB=3,AD=1,AA1=2,且∠BAA1=∠DAA1=60°.则异面直线AC与BD1所成角的余弦值为$\frac{7\sqrt{10}}{40}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我们把离心率e=$\frac{\sqrt{5}+1}{2}$的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)称为黄金双曲线.如图是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0,c=$\sqrt{{a}^{2}+{b}^{2}}$)的图象,给出以下几个说法:
①若b2=ac,则该双曲线是黄金双曲线;
②若F1,F2为左右焦点,A1,A2为左右顶点,B1(0,b),B2(0,-b)且∠F1B1A2=90°,则该双曲线是黄金双曲线;
③若MN经过右焦点F2且MN⊥F1F2,∠MON=90°,则该双曲线是黄金双曲线.
其中正确命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆${C_1}:{x^2}+{y^2}=1$,圆${C_2}:{(x-3)^2}+{(y-4)^2}=9$,则圆C1与圆C2的位置关系是(  )
A.内含B.外离C.相交D.相切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设命题p:方程$\frac{x^2}{m-1}+\frac{y^2}{m+2}=1$表示双曲线,命题q:关于x的方程x2+mx+4=0有实数解.
(1)若命题p为真命题,求实数m的取值范围;
(2)求使“p∨q”为假命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=x3+mx,m∈R,若函数y=f(x)的图象在点(1,f(1))处的切线与x轴平行,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U={1,2,3,4,5},集合A={4,5},则∁UA=(  )
A.{5}B.{4,5}C.{1,2,3}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a∈(0,5),且a≠1,则函数f(x)=loga(ax-1)在(2,+∞)上为单调函数的概率为(  )
A.$\frac{9}{10}$B.$\frac{4}{5}$C.$\frac{1}{5}$D.$\frac{1}{10}$

查看答案和解析>>

同步练习册答案