精英家教网 > 高中数学 > 题目详情
设F1,F2分别为椭圆
x2
a2
+y2=1的左、右焦点,斜率为k的直线l经过右焦点F2,且与椭圆相交于A,B两点,且△ABF1的周长为4
2

(Ⅰ)求椭圆的方程;
(Ⅱ)如果△ABF1的重心在y轴上,求直线l的斜率k.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由△ABF1的周长为4
2
,知4a=4
2
,由此能求出椭圆的方程.
(Ⅱ)直线l:y=k(x-1),联立
y=k(x-1)
x2
2
+y2=1
,得(1+2k2)x2-4k2x+2k2-2=0,由此利用韦达定理、根的判别式和三角形重心坐标公式能求出直线l的斜率.
解答: 解:(Ⅰ)∵F1,F2分别为椭圆
x2
a2
+y2=1的左、右焦点,
斜率为k的直线l经过右焦点F2,且与椭圆相交于A,B两点,
且△ABF1的周长为4
2

∴4a=4
2
,解得a=
2

∴椭圆的方程为
x2
2
+y2=1

(Ⅱ)∵椭圆的方程为
x2
2
+y2=1

∴F1(-1,0),F2(1,0),∴直线l:y=k(x-1),
联立
y=k(x-1)
x2
2
+y2=1
,得(1+2k2)x2-4k2x+2k2-2=0,
设A(x1,y1),B(x2,y2),则x1+x2=
4k2
1+2k2

△=16k4-4(1+2k2)(2k2-2)>0,
∵△ABF1的重心在y轴上,
∴x1+x2-1=
4k2
1+2k2
-1=0,
解得k=±
2
2
,满足△>0.
∴直线l的斜率k=±
2
2
点评:本题考查椭圆方程的求法,考查直线的斜率的求法,解题时要认真审题,注意三角形重心坐标公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z=
i
1+i
的共轭复数是(  )
A、
1
2
+
1
2
i
B、
1
2
-
1
2
i
C、-
1
2
+
1
2
i
D、-
1
2
-
1
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

若点A(1,m-1,1)和点B(-1,-3,-1)关于原点对称,则m=(  )
A、-4B、4C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

对某校高二年级学生中学阶段参加社区服务的次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图,
分组 频数 频率
[5,15) 10 0.25
[15,25) 26 0.65
[25,35) 3 P
[35,45) m 0.025
合计 M 1
(Ⅰ)请写出表中M,m,P及图中a的值;
(Ⅱ)请根据频率分布直方图估计这M名学生参加社区服务的次数的众数与中位数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于25次的学生中任选2人,求恰有一人参加社区服务次数落在区间[35,45)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(1,2)到抛物线y2=2px(p>0)的焦点F的距离为2,过T(3,-2)的动直线l与此抛物线交于P、Q两点
(1)求抛物线的标准方程;
(2)证明:直线AP与直线AQ的斜率之积恒为定值
(3)是否存在以PQ为底边的等腰△AQP?若存在,说出这样的等腰三角形的个数,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在(-L,L)上,证明:f(x)+f(-x)是偶函数,f(x)-f(-x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2是离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,抛物线y2=4x与椭圆C在第一象限的交点到x=-1的距离为-3+3
2
.设A,B是C上的两个动点,线段AB的中点M在直线x=-
1
2
上,线段AB的中垂线与C交于P,Q两点.
(1)求椭圆C的方程;
(2)是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两个学校高三年级学生比为11:10,为了了解两个学校全体高三年级学生在省统考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.
甲校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 2 3 10 15
分组 [110,120) [120,130) [130,140) [140,150)
频数 15 x 3 1
乙校:
分组 [70,80) [80,90) [90,100) [100,110)
频数 1 2 9 8
分组 [110,120) [120,130) [130,140) [140,150)
频数 10 10 y 3
(1)计算x,y的值,并根据抽样结果分别估计甲校和乙校的优秀率;
(2)若把频率作为概率,现从乙校学生中任选3人,求优秀学生人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC是边长为3的等边三角形,点D、E分别是边AB,AC上的点,且满足
AD
DB
=
CE
EA
=
1
2
.将△ADE沿DE折起到△A1DE的位置,并使得平面A1DE⊥平面BCED.
(1)求证:A1D⊥EC;
(2)设P为线段BC上的一点,试求直线PA1与平面A1BD所成角的正切的最大值.

查看答案和解析>>

同步练习册答案