分析 由等边三角形的面积计算公式可得:△SAB的面积=$\frac{\sqrt{3}}{4}$×22.即可得出四面体S-ABC的表面积.设O为△ABC的中心,延长AO交BC于点D,连接SO,SD,则SO⊥底面ABC,D为BC的中点.可得AD=$\frac{\sqrt{3}}{2}$a=SD,OD=$\frac{1}{3}$AD,AO=$\sqrt{S{D}^{2}-O{D}^{2}}$.利用VS-ABC=$\frac{1}{3}$•S△ABC×SO即可得出.
解答
解:如图所示,
由等边三角形的面积计算公式可得:△SAB的面积=$\frac{\sqrt{3}}{4}$×22.
∴四面体S-ABC的表面积为4×$\frac{\sqrt{3}}{4}$×22=4$\sqrt{3}$.
设O为△ABC的中心,延长AO交BC于点D,连接SO,SD,则SO⊥底面ABC,D为BC的中点.
∴AD=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$=SD,OD=$\frac{1}{3}$AD=$\frac{\sqrt{3}}{6}$×2=$\sqrt{3}$,
∴AO=$\sqrt{S{D}^{2}-O{D}^{2}}$=$\frac{2\sqrt{6}}{3}$.
∴VS-ABC=$\frac{1}{3}$•S△ABC×SO=$\frac{1}{3}$×$\sqrt{3}$4×$\frac{2\sqrt{6}}{3}$=$\frac{2\sqrt{2}}{3}$.
点评 本题考查了等边三角形的性质及其面积计算公式、正三棱锥的性质、线面垂直的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,1) | C. | (-∞,-1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com