分析 (1)由已知列关于a,b,c的方程组,求解方程组可得a,b,c的值,则椭圆方程可求;
(2)由题意定义可得|PF1|+|PF2|=2a=4,再由基本不等式求得|PF1|•|PF2|的最大值.
解答 解:(1)由题意,得$\left\{{\begin{array}{l}{\frac{c}{a}=\frac{{\sqrt{3}}}{2}}\\{\frac{1}{a^2}+\frac{3}{{4{b^2}}}=1}\\{{a^2}={b^2}+{c^2}}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{a=2}\\{b=1}\\{c=\sqrt{3}}\end{array}}\right.$.
∴椭圆C的方程是$\frac{x^2}{4}+{y^2}=1$;
(2)∵P在椭圆上运动,
∴|PF1|+|PF2|=2a=4,
∴|PF1|•|PF2|≤$(\frac{|P{F}_{1}|+|P{F}_{2}|}{2})^{2}=(\frac{4}{2})^{2}=4$,
当且仅当|PF1|=|PF2|时等号成立,
∴|PF1|•|PF2|的最大值为4.
点评 本题考查椭圆的简单性质,考查了椭圆的定义及基本不等式的应用,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | 8 | C. | 8$\sqrt{3}$ | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y(x)=x•ex | B. | $y=\frac{sinx}{x}$ | C. | $y=\frac{x}{sinx}$ | D. | $y=\frac{lnx}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $-\frac{3}{5}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com