精英家教网 > 高中数学 > 题目详情
14.下列函数中,与函数$f(x)=\frac{1}{{\root{3}{x}}}$的定义域相同的函数是(  )
A.y(x)=x•exB.$y=\frac{sinx}{x}$C.$y=\frac{x}{sinx}$D.$y=\frac{lnx}{x}$

分析 根据常见函数的性质求出函数的定义域即可.

解答 解:函数f(x)的定义域是{x|x≠0},
对于A,y(x)的定义域是R,
对于B,函数的定义域是{x|x≠0},
对于C,函数的定义域是:{x|x≠kπ,k∈Z},
对于D,函数的定义域是{x|x>0},
故选:B.

点评 本题考查了求函数的定义域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程为(  )
A.y=2x或x-y+1=0B.y=2x,x+y-3=0
C.x+y-3=0,或x-y+1=0D.y=2x,或x+y-3=0,或x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在1,2,3,6这组数据中随机取出三个数,则数字3是这三个不同数字的中位数的概率是(  )
A.$\frac{3}{4}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=a(x-1)-lnx(a∈R),g(x)=ex-x-1.
(1)求函数g(x)的单调区间;
(2)若对任意x0∈(0,1],总存在两个不同的xi∈(0,e](i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn是等比数列{an}的前n项和,公比q>0,则Sn+1an与Snan+1的大小关系是(  )
A.Sn+1an>Snan+1B.Sn+1an<Snan+1C.Sn+1an≥Snan+1D.Sn+1an≤Snan+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且经过点(1,$\frac{{\sqrt{3}}}{2}$),F1,F2是椭圆的左、右焦点.
(1)求椭圆C的方程;
(2)点P在椭圆上运动,求|PF1|•|PF2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={-1,0,1},N={x|(x+1)(x-1)<0},则M∩N=(  )
A.{-1,0,1}B.[-1,1]C.{0}D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$tan2θ=\frac{4}{3},π<2θ<2π$
(1)求tanθ的值;
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ-1}}{sin(π-θ)+cosθ}$的值.

查看答案和解析>>

同步练习册答案