精英家教网 > 高中数学 > 题目详情
设z1是虚数,z2=z1+
1
z1
是实数,且-1≤z2≤1,求|z1|的值以及z1实部的取值范围.
考点:复数代数形式的混合运算
专题:数系的扩充和复数
分析:设z1=a+bi,a,b∈R且b≠0,可得z2,由实数可得a,b的式子,可得|z1|的值和a的范围.
解答: 解:设z1=a+bi,a,b∈R且b≠0,
z2=z1+
1
z1
=a+bi+
1
a+bi
=(a+
a
a2+b2
)+(b-
b
a2+b2
)i

∵z2是实数,b≠0,于是有a2+b2=1,即|z1|=1,还可得z2=2a
由-1≤z2≤1,得-1≤2a≤1,解得-
1
2
≤a≤
1
2

∴z1的实部的取值范围是[-
1
2
1
2
]
点评:本题考查复数的代数形式的混合运算,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=sin(2x+
π
3
)(x∈R)的最小正周期为(  )
A、
π
2
B、4π
C、2π
D、π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f′(x)=ex-1(e为自然对数的底数,f(x)解析式无常数项)
(1)求f(x)的最小值;
(2)若对于任意的x∈[0,2],不等式f(x)≥ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是边长为2的正方形,EA⊥平面ABCD,FC⊥平面ABCD,设EA=1,FC=2;
(1)证明:平面EAB⊥平面EAD;
(2)求四面体BDEF的体积;
(3)求点B到平面DEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有6套最新2014年春夏流行服装,其中有4套春季服装,2套夏季服装,某著名主持人从中选取2套,试求:
(I)所取的2套服装都是春季服装的概率;
(Ⅱ)所取的2套服装不是同一季服装的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+4.
(1)若函数f(x)满足f(1+x)=f(1-x),求函数在x∈[-2,2]的值域;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+1的图象上方,试确定实数a的范围.
(3)若方程f(x)=0在[-1,1]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学生创业团队淘宝项目每月要投入一定的营销费用,已知每投入营销费用k万元,每月销售收入大概增加-k2+5k+1万元.(利润=增加的销售收入-投入)
(Ⅰ)若该创业团队将本月的营销费用控制在3万元之内,则应投入多少营销费用才能使该项目本月利润最大.
(Ⅱ)现该创业团队本月准备投入3万元,分别用于营销费用和产品研发升级,经预测,产品研发升级费用每投入x万元增加的销售收入大概为-
1
3
x3+x2+3x万元,如何分配该笔资金,使该项目本月利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

作为家长都希望自己的孩子能升上比较理想的高中,于是就催生了“名校热”,这样择校的结果就导致了学生在路上耽误的时间增加了.若某生由于种种原因,每天只能 6:15骑车从家出发到学校,途经5个路口,这5个路口将家到学校分成了6个路段,每个路段的骑车时间是10分钟(通过路口的时间忽略不计),假定他在每个路口遇见红灯的概率均为
1
3
,且该生只在遇到红灯或到达学校才停车.对每个路口遇见红灯情况统计如下:
红灯 1 2 3 4 5
等待时间(秒) 60 60 90 30 90
(1)设学校规定7:20后(含7:20)到校即为迟到,求这名学生迟到的概率;
(2)设X表示该学生上学途中遇到的红灯数,求P(X≥2)的值;
(3)设Y表示该学生第一次停车时已经通过路口数,求随机变量Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的程序框图中,当输入实数x的值为4时,输出的结果为2;当输入实数x的值为-2时,输出的结果为4.
(l)求实数a,b的值,并写出函数f(x)的解析式;
(Ⅱ)若输出的结果为8,求输入的x的值.

查看答案和解析>>

同步练习册答案