精英家教网 > 高中数学 > 题目详情
10.1和5的等差中项是(  )
A.$\sqrt{5}$B.$±\sqrt{5}$C.3D.±3

分析 由a,b,c成等差数列,可得2b=a+c,计算即可得到所求值.

解答 解:1和5的等差中项为$\frac{1+5}{2}$=3,
故选:C.

点评 本题考查等差数列中项的定义和性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知二项式(x2-$\frac{1}{x}$)n的展开式的二项式系数之和为32,则展开式中含x项的系数是-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从混有3张假钞的10张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率为(  )
A.$\frac{1}{8}$B.$\frac{2}{9}$C.$\frac{1}{15}$D.$\frac{3}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=$\frac{8}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设点O为坐标原点,椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a≥b>0)的右顶点为A,上顶点为B,过点O且斜率为$\frac{1}{6}$的直线与直线AB相交M,且$\overrightarrow{MA}=\frac{1}{3}\overrightarrow{BM}$.
(Ⅰ)求椭圆E的离心率e;
(Ⅱ)PQ是圆C:(x-2)2+(y-1)2=5的一条直径,若椭圆E经过P,Q两点,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=(x2-3)ex,现给出下列结论:
①f(x)有极小值,但无最小值②f(x)有极大值,但无最大值
③若方程f(x)=b恰有一个实数根,则b>6e-3
④若方程f(x)=b恰有三个不同实数根,则0<b<6e-3
其中所有正确结论的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知曲线f(x)=lnx在点(2,f(2))处的切线与直线ax+y+1=0垂直,则实数a的值为(  )
A.$\frac{1}{2}$B.-2C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD为正方形,点E是棱PA的中点,PB=PD,平面BDE⊥平面ABCD.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:PC⊥平面ABCD;
(Ⅲ) 设PC=λAB,试判断平面PAD⊥平面PAB能否成立;若成立,写出λ的一个值(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=2cos(2x-$\frac{π}{6}}$)的图象向左平移$\frac{π}{4}$个单位得到g(x)的图象,记函数g(x)在区间$[{t,t+\frac{π}{4}}]$内的最大值为Mt,最小值为mt,记ht=Mt-mt,若t∈[${\frac{π}{4}$,$\frac{π}{2}}$],则函数h(t)的最小值为1.

查看答案和解析>>

同步练习册答案