精英家教网 > 高中数学 > 题目详情
5.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.45B.$45+\frac{{9\sqrt{2}}}{2}$C.$\frac{117}{2}$D.60

分析 由已知中的三视图,可知该几何体是一个以边长为3,和4的直角三角形为底面的三棱柱,切去了一个边长为3,和4的直角三角形为底面,高是3的三棱锥,累加各个面的面积可得,几何体的表面积.

解答 解:由已知中的三视图,可知该几何体是一个以边长为3,和4的直角三角形为底面的三棱柱,切去了一个边长为3,和4的直角三角形为底面,高是3的三棱锥.(如图)ABC-D是切去的三棱锥
可得:矩形ABB′A′的面积为:5×3=15,
梯形ADC′A′的面积为:$\frac{1}{2}(5+2)×5$=$\frac{35}{2}$,
梯形BDC′B′的面积为:$\frac{1}{2}(5+2)×4=14$,
底面ABC的面积为:$3×4×\frac{1}{2}=6$,
三角形ABD是直角三角形:其面积为:$\frac{1}{2}×3×5=\frac{15}{2}$,
∴该几何体的表面积为:$\frac{35}{2}+\frac{15}{2}+14+6=45$.
故选A

点评 本题考查的知识点是由三视图求表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知命题p:方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.传承传统文化再掀热潮,在刚刚过去的新春假期中,央视科教频道以诗词知识竞赛为   主的《中国诗词大会》火爆荧屏,如图的茎叶图是两位选手在个人追逐赛中的比赛得    分,则下列说法正确的是(  )
A.甲的平均数大于乙的平均数B.甲的中位数大于乙的中位数
C.甲的方差大于乙的方差D.甲的平均数等于乙的中位数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设a、b∈R,若函数$f(x)=x+\frac{a}{x}+b$在区间(1,2)上有两个不同的零点,则f(1)的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z满足(1+i)z=2-3i,则复数z的虚部是(  )
A.$-\frac{5}{2}i$B.$-\frac{1}{2}i$C.$-\frac{5}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)在R上的导函数为f'(x),对于任意的实数x,都有f'(x)+2017<4034x,若f(t+1)<f(-t)+4034t+2017,则实数t的取值范围是(  )
A.$({-\frac{1}{2},+∞})$B.$({-\frac{3}{2},+∞})$C.$({-∞,-\frac{1}{2}})$D.$({-∞,-\frac{3}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数$z=\frac{i}{3+i}$,则复数z在复平面中对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知tanα=2,则$cos2α+sin({\frac{π}{2}+α})cos({\frac{3π}{2}-α})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{bn}为等比数列,且b1008=e(e为自然对数的底数),数列{an}首项为1,且an+1=an•bn,则lna2016的值为2015.

查看答案和解析>>

同步练习册答案