精英家教网 > 高中数学 > 题目详情
4.(1)求函数y=2|x-1|-|x-4|的值域;
(2)若不等式2|x-1|-|x-a|≥-1在x∈R上恒成立,求实数a的取值范围.

分析 (1)通过讨论x的范围求出函数f(x)的分段函数的形式,从而求出f(x)的值域即可;
(2)通过讨论a的范围,求出函数f(x)的分段函数的形式,求出f(x)的最小值,得到关于a的不等式,解出即可.

解答 解:(1)∵y=2|x-1|-|x-4|=$\left\{\begin{array}{l}{x+2,x≥4}\\{3x-6,1≤x≤4}\\{-x-2,x≤1}\end{array}\right.$=$\left\{\begin{array}{l}{y≥6}\\{-3≤y≤6}\\{y≥-3}\end{array}\right.$,
故函数的值域是[-3,+∞);
(2)f(x)=2|x-1|-|x-a|,
①a≥1时,f(x)=$\left\{\begin{array}{l}{x-2+a,x≥a}\\{3x-2-a,1<x<a}\\{-(x-2+a),x≤1}\end{array}\right.$=$\left\{\begin{array}{l}{f(x)≥2a-2}\\{1-a≤f(x)≤2a-2}\\{f(x)≥1-a}\end{array}\right.$,
而2a-2>1-a,
此时f(x)的最小值是1-a,故只需1-a≥-1,
∴1≤a≤2;
②a<1时,f(x)=$\left\{\begin{array}{l}{x-2+a,x≥1}\\{3x-2-a,a<x<1}\\{-x+2-a,x≤a}\end{array}\right.$=$\left\{\begin{array}{l}{f(x)≥-1+a}\\{-1<f(x)<2-2a}\\{f(x)≥2-2a}\end{array}\right.$,
此时a<1时,-1+a<2-2a,f(x)的最小值是a-1,
只需a-1≥-1,0≤a<1,
综上,a的范围是[0,2].

点评 本题考查了解绝对值不等式问题,考查分段函数以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,该程序运行后输出的结果是(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.非零向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a⊥({2\overrightarrow a+\overrightarrow b})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,则$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某个几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体外接球的直径为(  )
A.2B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{6}$个单位后关于y轴对称,则函数f(x)的一个单调递增区间是(  )
A.$[{-\frac{5π}{6},\frac{π}{12}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{π}{6},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.传承传统文化再掀热潮,在刚刚过去的新春假期中,央视科教频道以诗词知识竞赛为   主的《中国诗词大会》火爆荧屏,如图的茎叶图是两位选手在个人追逐赛中的比赛得    分,则下列说法正确的是(  )
A.甲的平均数大于乙的平均数B.甲的中位数大于乙的中位数
C.甲的方差大于乙的方差D.甲的平均数等于乙的中位数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设a、b∈R,若函数$f(x)=x+\frac{a}{x}+b$在区间(1,2)上有两个不同的零点,则f(1)的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知tanα=2,则$cos2α+sin({\frac{π}{2}+α})cos({\frac{3π}{2}-α})$=-1.

查看答案和解析>>

同步练习册答案