精英家教网 > 高中数学 > 题目详情
4.设集合A={0,1,2,3},集合B={-1,1},则A∩B=(  )
A.{1}B.{-1,1}C.{-1,0}D.{-1,0,1}

分析 利用交集定义直接求解.

解答 解:∵集合A={0,1,2,3},集合B={-1,1},
∴A∩B={1}.
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.若甲、乙、丙三组科研人员人数分别为12,18,m,现用分层抽样方法从这三组人员中抽取n人组成一个科考队,若在乙组中抽3人,丙组中抽4人,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,过F2作x轴的垂线与双曲线交于A、B两点,G是△ABF1的重心,且$\overrightarrow{GA}$•$\overrightarrow{{F}_{1}B}$=0,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=2-\frac{3}{x}$,若g(x)=f(x)-m为奇函数,则实数m的值为(  )
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x),定义$F(f(x))=\left\{\begin{array}{l}1,x<f(x)\\ 0,x=f(x)\\-1,x>f(x).\end{array}\right.$
(Ⅰ)写出函数F(2x-1)的解析式;
(Ⅱ)若F(|x-a|)+F(2x-1)=0,求实数a的值;
(Ⅲ)当$x∈[\frac{π}{3},\frac{4}{3}π]$时,求h(x)=cosx•F(x+sinx)的零点个数和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某市家庭煤气的使用量x(m3)和煤气费f(x)(元) 满足关系f(x)=$\left\{\begin{array}{l}{C,0<x≤A}\\{C+B(x-A),x>A}\end{array}\right.$,已知某家庭今年前三个月的煤气费如表:
月份用气量煤气费
一月份4m34 元
二月份25m314 元
三月份35m319 元
若四月份该家庭使用了20m3的煤气,则其煤气费为(  )元.
A.10.5B.10C.11.5D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}x-y≤1\\ 2x+y≤5\\ x≥1\end{array}\right.$,则z=3x+y的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a∈($\frac{π}{2}$,π),sinα=$\frac{3}{5}$,则tan(α+$\frac{π}{4}$)=(  )
A.$-\frac{1}{7}$B.7C.$\frac{1}{7}$D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a,b,c均为实数,则“b2=ac”是“a,b,c构成等比数列”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案