精英家教网 > 高中数学 > 题目详情
10.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成如下六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.
(1)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数.
(2)在抽取的40名学生中,若从数学成绩在[40,50)与[90,100]两个分数段内随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的槪率.

分析 (1)由频率分布直方图中频率之和为1,能求出a,由频率分布直方图:成绩不低于60分的频率1-10×(0.05+0.01)=0.85,故估计高一年级期中考试数学成绩不低于60分的人数.
(2)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,由此利用列举法能过河卒子同这两名学生的数学成绩之差的绝对值不大于10的概率.

解答 解:(1)由频率分布直方图,得:
10×(0.005+0.01+0.025+a+0.01)=1,
解得a=0.03.
由频率分布直方图:成绩不低于60分的频率1-10×(0.05+0.01)=0.85,
估计期中考试成绩不低于60分的人数为约为640×0.85=544
(2)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,
数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,
若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,
则所有的基本事件有:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),
(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,
如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,
则这两名学生的数学成绩之差的绝对值不大于10,
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,
则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,
所以这两名学生的数学成绩之差的绝对值不大于10的概率P=$\frac{7}{15}$.

点评 本题考查频率和概率的求法,解题时要认真审题,注意频率分布直方图和列举法的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),过F且垂直于x轴的直线在第一象限内与双曲线、双曲线的渐近线的交点依次为A,B,若A为BF的中点,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.2016年某高校艺术类考试中,共有6位选手参加,其中3位女生,3位男生,现这六名考试依次出场进行才艺展出,如果3位男生中任何两人都不能连续出场,且女生甲不能排第一个,那么这六名考生出场顺序的排法种数为(  )
A.108B.120C.132D.144

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一扇形的周长为24cm,当这个扇形的面积最大时,半径R的值为(  )
A.4 cmB.5cmC.6cmD.7cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某集成电路由2个不同的电子元件组成.每个电子元件出现故障的概率分别为$\frac{1}{6}$,$\frac{1}{10}$,两个电子件能否正常工作相互对立,只有两个电子元件都正常工作该集成电路才能正常工作.
(1)求该集成电路不能正常工作的概率;
(2)如果该集成电路能正常工作,则出售该集成电路可获利40元,如果该集成电路不能正常工作,则每件亏损80元(即获利-80元).已知一包装箱中有4块集成电路,记该箱集成电路获利X元,求X的分布列,并求出均值E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.体育课上,李老师对初三 (1)班50名学生进行跳绳测试,现测得他们的成绩(单位:个)全部介于20与70之间,将这些成绩数据进行分组(第一组:(20,30],第二组:(30,40],…,第五组:(60,70]),并绘制成如图所示的频率分布直方图.
(1)求成绩在第四组的人数和这50名同学跳绳成绩的中位数;
(2)从成绩在第一组和第五组的同学中随机取出 2名同学进行搭档,求至少有一名同学在第一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列a1,a2,…,a9的公差为3,随机变量ξ等可能地取值a1,a2,…,a9,则方差Dξ=60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合M={0,2,4},N={x|x=$\frac{a}{2}$,a∈M},则集合M∩N={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD的底面ABCD为矩形,AB=2$\sqrt{2}$,BC=2,点P在底面上的射影在AC上,E,F分别是AB,BC的中点.
(Ⅰ)证明:DE⊥平面PAC;
(Ⅱ)在PC边上是否存在点M,使得FM∥平面PDE?若存在,求出$\frac{PM}{MC}$的值;不存在,请说明理由.

查看答案和解析>>

同步练习册答案