精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)的导函数f′(x)=a(x+b)2+c(a≠0)的图象如图所示,则函数f(x)的图象可能是(  )
A.B.C.D.

分析 根据导数和函数的单调性的关系即可判断.

解答 解:由f′(x)图象可知,函数f(x)先减,再增,再减,
故选:D.

点评 本题考查了导数和函数的单调性的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足2acosC=2b-$\sqrt{3}$c.
(1)求角A;
(2)若B=$\frac{π}{6}$,且BC边上的中线AM的长为$\sqrt{7}$,求此时△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3$\frac{1}{3}$寸,容纳米2000斛,(注:1丈=10尺,1尺=10寸,1斛=1.62立方尺,圆周率取3),则圆柱底圆周长约为(  )
A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知各项为正数的数列{an}的前{Sn},满足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求证:{an}为等差数列,并求其通项公式;
(Ⅱ)设{bn}满足bn+1=2bn,b2=2,求数列{anbn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若等差数列{an}的前n项和为Sn,a4=4,S4=10,则数列$\left\{{\frac{1}{{\;{a_n}{a_{n+1}}\;}}}\right\}$的前2018项的和为$\frac{2018}{2019}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列关于函数y=tan(x+$\frac{π}{3}$)的说法正确的是(  )
A.在区间(-$\frac{π}{6}$,$\frac{5π}{6}$)上单调递增B.最小正周期是π
C.图象关于点($\frac{π}{4}$,0)成中心对称D.图象关于直线x=$\frac{π}{6}$成轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α,β是不同的平面,m,n是不同的直线,给出下列命题:
①若m?α,n?α,m∥β,n∥β,则α∥β;
②若m?α,n?α,m,n是异面直线,则n与α相交;
③若α∩β=m,n∥m,且n?α,n?β,则n∥α,n∥β.
其中真命题的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在(x+a)9的展开式中,若第四项的系数为84,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如果有穷数列a1,a2,a3,…am(m为正整数)满足a1=am,a2=am-1,…am=a1,即ai=am-i+1(i=1,2…,m),那么我们称其为对称数列.
(1)设数列{bn}是项数为7的对称数列,其中b1,b2,b3,b4为等差数列,且b1=2,b4=11,依次写出数列{bn}的各项;
(2)设数列{cn}是项数为2k-1(正整数k>1)的对称数列,其中ck,ck+1,…,c2k-1是首项为50,公差为-4的等差数列.记数列{cn}的各项和为数列S2k-1,当k为何值时,S2k-1取得最大值?并求出此最大值;
(3)对于确定的正整数m>1,写出所有项数不超过2m的对称数列,使得1,2,22,…,2m-1依次为该数列中连续的项.当m>1500时,求其中一个数列的前2015项和S2015

查看答案和解析>>

同步练习册答案