精英家教网 > 高中数学 > 题目详情
8.共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
 租用单车数量x(千辆) 2 3 4 5 8
 每天一辆车平均成本y(元) 3.2 2.4 2 1.9 1.7
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$称为相应于点(xi,yi)的残差(也叫随机误差);
  租用单车数量x(千辆) 2 3 4 5 8
 每天一辆车平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估计值$\stackrel{∧}{{y}_{i}}$(1)  2.4 2.1  1.6
 残差$\stackrel{∧}{{e}_{i}}$(1)  0-0.1  0.1
模型乙 估计值$\stackrel{∧}{{y}_{i}}$ (2)  2.3 21.9  
残差$\stackrel{∧}{{e}_{i}}$(2)  0.1 0 0 
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

分析 (1)①通过计算填写表中数据;②计算模型甲、乙的残差平方,比较即可得出结论;
(2)计算投放共享单车为8千辆和1万辆时,该公司一天获得的总利润,从而得出正确的结论.

解答 解:(1)①经计算,可得下表(计算结果精确到0.1);

  租用单车数量x(千辆) 2 3 4 5 8
 每天一辆车平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估计值$\stackrel{∧}{{y}_{i}}$(1)3.1  2.4 2.11.9  1.6
 残差$\stackrel{∧}{{e}_{i}}$(1)0.1  0-0.1 0 0.1
模型乙 估计值$\stackrel{∧}{{y}_{i}}$ (2)3.2  2.3 21.9 1.7 
残差$\stackrel{∧}{{e}_{i}}$(2) 0.1 0 0 0
②计算模型甲的残差平方Q1=0.12+(-0.1)2+0.12=0.03,
模型乙的残差平方Q2=0.12=0.01;
∴Q1>Q2,故模型乙的拟合效果更好;
(2)若该城市投放共享单车为8千辆时,则该公司获得每辆车一天的收入期望为:
10×0.6+6×0.4=8.4(元),
所以该公司一天获得的总利润为(8.4-1.7)×8000=53600(元);
若投放共享单车为1万辆时,则每辆车的成本为$\frac{6.4}{{10}^{2}}$+1.6=1.664(元),
每辆车一天的收入期望为10×0.4+6×0.6=7.6(元),
所以该公司一天获得的总利润为(7.6-1.664)×10000=59360(元);
由59360>53600,∴投放1万辆能获得更多利润,应该增加到投放1万辆.

点评 本题考查了残差平方的计算问题,也考查了利润函数的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.利用等式kCnk=nCn-1k-1(1≤k≤n,k,n∈N*)可以化简1•Cn1+2•Cn221+n•Cnn2n-1=nCn-10+n•Cn-1121+n•Cn222+…+n•Cn-1n-12n-1=n(1+2)n-1=n•3n-1.等式kCnk=nCn-1k-1有几种变式,如:$\frac{1}{k}C_{n-1}^{k-1}=\frac{1}{n}$Cnk又如将n+1赋给n,可得到kCn+1k=(n+1)Cnk-1,…,类比上述方法化简等式:Cn0•$\frac{1}{5}+\frac{1}{2}C_n^1•{({\frac{1}{5}})^2}+\frac{1}{3}C_n^2•{({\frac{1}{5}})^3}+…+\frac{1}{n+1}C_n^n•{({\frac{1}{5}})^{n+1}}$=$\frac{1}{n+1}[{{{(\frac{6}{5})}^{n+1}}-1}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在一个周期内的图象如图所示,若已知函数数f(x1)=f(x2),且x1,x2∈[$\frac{π}{12}$,$\frac{5π}{6}$],x1≠x2,则f(x1+x2)=(  )
A.$\sqrt{3}$B.2C.-$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若{$\frac{{a}_{n}}{n}$+1}是公比为2的等比数列,且a1=1,则a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{9}}{9}$=1013.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若sin($α+\frac{π}{4}$)=$\sqrt{2}$(sinα+2cosα),则sin2α=(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知奇函数f(x)在R上是增函数.若a=-f(log2$\frac{1}{5}$),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由“若数列{an}为等差数列,则有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”类比“若数列{bn}为正项等比数列,则有$\root{5}{{{b}_{6}b}_{7}••{•b}_{10}}$=$\root{15}{{{{b}_{1}b}_{2}b}_{3}••{•b}_{15}}$成立”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设$[{\begin{array}{l}2\\ 3\end{array}}]$是矩阵$M=[{\begin{array}{l}a&2\\ 3&2\end{array}}]$的一个特征向量.
(1)求实数a的值;
(2)求矩阵M的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,△PAB为等边三角形,O为AB的中点,PO丄AC.
(1)求证:平面PAB丄平面ABCD;
(2)求PC与平面ABCD所成角的余弦值.

查看答案和解析>>

同步练习册答案