分析 (1)要证明平面PAB⊥平面ABCD,根据面面垂直的判定定理,关键是要在一个平面里找到一条直线与另外一个平面垂直,观察发现△PAB底边AB上的中线满足要求,添加辅助线后,证明线面垂直即可得到结论.
(2)由(1)的结论,我们易得∠PCO即为所求,构造三角形,解三角形即可得到答案.
解答
解:(1)证明:∵△PAB为等边三角形,O为AB中点,
∴PO⊥AB.
又PO⊥AC,∴PO⊥平面ABCD.
又PO?平面PAB,
∴平面PAB⊥平面ABCD.
(2)解:∵PO⊥平面ABCD.
∴∠PCO为直线PC与平面ABCD所成的角.
设底面正方形边长为2,
则PO=$\sqrt{3}$,CO=$\sqrt{5}$∴PC=$\sqrt{P{O}^{2}+C{O}^{2}}=2\sqrt{2}$,cos∠PCO=$\frac{CO}{PC}=\frac{\sqrt{5}}{2\sqrt{2}}=\frac{\sqrt{10}}{4}$
∴PC与平面ABCD所成角的余弦值为$\frac{\sqrt{10}}{4}$.
点评 本小题主要考查空间面面关系的垂直关系的判断、线面角的求解,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、属于中档题.
科目:高中数学 来源: 题型:解答题
| 租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 |
| 每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
| 租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 | |
| 每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
| 模型甲 | 估计值$\stackrel{∧}{{y}_{i}}$(1) | 2.4 | 2.1 | 1.6 | ||
| 残差$\stackrel{∧}{{e}_{i}}$(1) | 0 | -0.1 | 0.1 | |||
| 模型乙 | 估计值$\stackrel{∧}{{y}_{i}}$ (2) | 2.3 | 2 | 1.9 | ||
| 残差$\stackrel{∧}{{e}_{i}}$(2) | 0.1 | 0 | 0 | |||
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 平均每天锻炼的时间(分钟) | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
| 总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
| 课外体育不达标 | 课外体育达标 | 合计 | |
| 男 | |||
| 女 | 20 | 110 | |
| 合计 |
| 学生的编号i | 1 | 2 | 3 | 4 | 5 |
| 跳远成绩xi | 80 | 75 | 70 | 65 | 60 |
| 短跑100米成绩yi | 73 | 66 | 68 | 61 | 62 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 1 | 2 | 3 | 4 | 5 | 6 |
| f(x) | -8 | 2 | -3 | 5 | 6 | 8 |
| A. | 区间[2,3]和[3,4] | B. | 区间[3,4]、[4,5]和[5,6] | ||
| C. | 区间[2,3]、[3,4]和[4,5] | D. | 区间[1,2]、[2,3]和[3,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 5 | C. | 10 | D. | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于x轴对称 | B. | 关于y轴对称 | C. | 关于原点对称 | D. | 关于直线y=x对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | $\sqrt{3}$-1 | D. | $\sqrt{5}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1+i | B. | ∅ | C. | {-1+i} | D. | {-1-i} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com