精英家教网 > 高中数学 > 题目详情

【题目】F是抛物线y24x的焦点,MPQ是抛物线上三个不同的动点,直线PM过点FMQOP,直线QPMO交于点N.记点MPQ的纵坐标分别为y0y1y2

1)证明:y0y1y2

2)证明:点N的横坐标为定值.

【答案】(1)证明见解析 (2) 证明见解析

【解析】

(1) 由两直线平行的条件:斜率相等,运用直线的斜率公式,结合点在抛物线上,化简可得结论(2) 因为直线过点,所以,求得直线的方程,设点坐标为,又因为直线交于点,化简整理可得的方程,分解因式即可得到定值.

证明:(1) 因为MQOP,所以kMQkOP

所以,所以y0y1y2

(2) 因为直线PM过点F

可得

所以y1y0=﹣4,

由(1)得y0y1y2,所以y1y2y0

因为OMyx

PQyy1x),

4x﹣(y1+y2y+y1y20

设点N坐标为(mn),又因为直线QPMO交于点N

所以nm4m﹣(y1+y2n+y1y2=0,

可得y04m﹣(y0n+()(y0)=0,

消去y02mn2+n2+8m3+4m20

所以(2m+1n2+4m22m+1)=0,

所以(2m+1)(n2+4m2)=0

因为n2+4m2≠0,

所以2m+1=0,即m

所以点N的横坐标为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆分别为其左、右焦点,过的直线与此椭圆相交于两点,且的周长为8,椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)在平面直角坐标系中,已知点与点,过的动直线(不与轴平行)与椭圆相交于两点,点是点关于轴的对称点.求证:

i三点共线.

ii

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为陕西博物馆收藏的国宝——·金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯型几何体的主体部分可近似看作是双曲线的右支与直线,,围成的曲边四边形轴旋转一周得到的几何体,如图分别为的渐近线与,的交点,曲边五边形轴旋转一周得到的几何体的体积可由祖恒原理(祖恒原理:幂势既同,则积不容异).意思是:两等高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等,那么这两个几何体的体积相等),据此求得该金杯的容积是_____.(杯壁厚度忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右顶点分别为AB,点P在椭圆O上运动,若PAB面积的最大值为,椭圆O的离心率为

(1)求椭圆O的标准方程;

(2)B点作圆E的两条切线,分别与椭圆O交于两点CD(异于点B),当r变化时,直线CD是否恒过某定点?若是,求出该定点坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知动点P与两定点F1(﹣10)、F210)的连线的斜率之积为,求动点P的轨迹方程.

2)已知双曲线的渐近线方程为y±x,且与椭圆1有公共焦点,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面,直线.给出下列命题:

① 若,则; ② 若,则

③ 若,则; ④ 若,则.

其中是真命题的是_________.(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)若,求函数的单调区间;

(2)若,且方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. 288 B. 144 C. 720 D. 360

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中, ,四边形是正方形,二面角的大小为

1)在线段上找出一点,使得平面,并说明理由;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案