精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=-e-x(x-1);
②函数f(x)有2个零点;
③f(x)<0的解集为(-∞,-1)∪(0,1),
④?x1,x2∈R,都有|f(x1)-f(x2)|<2.其中正确命题的个数是(  )
A.4B.3C.2D.1

分析 ①根据f(x)为奇函数,可设x>0,从而有-x<0,从而可求出f(x)=e-x(x-1),
②从而可看出-1,1,0都是f(x)的零点,这便得出①②错误,
③而由f(x)解析式便可解出f(x)<0的解集,从而判断出③的正误,
④可分别对x<0和x>0时的f(x)求导数,根据导数符号可判断f(x)的单调性,根据单调性即可求出f(x)的值域,这样便可得出?x1,x2∈R,都有|f(x1)-f(x2)|<2.

解答 解:①f(x)为R上的奇函数,设x>0,-x<0,则:f(-x)=e-x(-x+1)=-f(x);
∴f(x)=e-x(x-1);
∴故①错误,
②∵f(-1)=0,f(1)=0;
又f(0)=0;
∴f(x)有3个零点;
故②错误,
③当x<0时,由f(x)=ex(x+1)<0,得x+1<0;
即x<-1,
当x>0时,由f(x)=e-x(x-1)<0,得x-1<0;
得0<x<1,
∴f(x)<0的解集为(0,1)∪(-∞,-1);
故③正确,
④当x<0时,f′(x)=ex(x+2);
∴x<-2时,f′(x)<0,-2<x<0时,f′(x)>0;
∴f(x)在(-∞,0)上单调递减,在(-2,0)上单调递增;
∴x=-2时,f(x)取最小值-e-2,且x<-2时,f(x)<0;
∴f(x)<f(0)=1;
即-e-2<f(x)<1;
当x>0时,f′(x)=e-x(2-x);
∴f(x)在(0,2)上单调递增,在(2,+∞)上单调递减;
x=2时,f(x)取最大值e-2,且x>2时,f(x)>0;
∴f(x)>f(0)=-1;
∴-1<f(x)≤e-2
∴f(x)的值域为(-1,e-2]∪[-e-2,1);
∴?x1,x2∈R,都有|f(x1)-f(x2)|<2;
故④正确,
∴正确的命题为③④.
故选:C

点评 本题主要考查与函数性质有关的命题的真假判断,结合函数奇偶性的性质求出函数的解析式,以及利用分类讨论的数学思想是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知a,b,c∈R,若$\frac{b}{a}•\frac{c}{a}>1$且$\frac{b}{a}+\frac{c}{a}≥-2$,则下列结论成立的是(  )
A.a,b,c同号B.b,c同号,a与它们异号
C.a,c同号,b与它们异号D.b,c同号,a与b,c符号关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=26,则f′(x)=(  )
A.2B.6C.0D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某四面体的三视图如图所示,则该四面体的外接球表面积为(  )
A.29πB.64πC.41πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知不等式|2x-3|>x的解集与不等式x2+ax+b>0的解集相等,则实数a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法-“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a=6102,b=2016时,输出的a=(  )
A.6B.9C.18D.54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.当正整数集合A满足:“若x∈A,则10-x∈A”.则集合A中元素个数至多有(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球形,按照设计要求中间圆柱体部分的容积为16π立方米,且L≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为1千元,半球形部分每平方米建造费用为$\frac{c}{2}(c>0)$千元.设该容器的建造费用为y千元.(圆柱体体积公式为V=πr2l,球的体积公式为$V=\frac{4}{3}π{r^3}$,圆柱侧面积公式为S=2πrl,球的表面积公式为S=4πr2
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=2cosx($\sqrt{3}$sinx+cosx)-1
(1)求函数f(x)的单调递减区间;
(2)若y=f(x+φ)关于直线x=$\frac{π}{3}$对称,求|φ|的最小值;
(3)当x∈[0,$\frac{π}{2}$]时,若方程|f(x)|-m=0有4个不同的实数解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案