分析 (1)根据函数是奇函数,则f(0)=0,建立方程即可得到结论.
(2)根据指数函数的单调性解不等式即可.
解答 解:(1)∵函数f(x)=a+$\frac{2}{{2}^{x}+1}$(x∈R)是奇函数.
∴f(0)=0,即f(0)=a+1=0,得a=-1.
(2)∵a=-1.
∴f(x)=-1+$\frac{2}{{2}^{x}+1}$,
由f(x)=-1+$\frac{2}{{2}^{x}+1}$>0得$\frac{2}{{2}^{x}+1}$>1,
即2x+1<2,即2x<1,
即x<0,
即x的取值范围是(-∞,0).
点评 本题主要考查函数奇偶性的应用以及不等式的求解,利用奇函数f(0)=0的性质是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | d>c>b>a | B. | d>c>a>b | C. | c>d>b>a | D. | a>b>d>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20km | B. | 20$\sqrt{3}$km | C. | 20$\sqrt{5}$km | D. | 20$\sqrt{7}$km |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{11}{4}$ | B. | 1 | C. | $\frac{19}{4}$ | D. | $\frac{21}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com