精英家教网 > 高中数学 > 题目详情
6.已知A,B两地间的距离为20km,B,C两地间的距离为40km,现测得∠ABC=120°,则A,C两地间的距离为(  )
A.20kmB.20$\sqrt{3}$kmC.20$\sqrt{5}$kmD.20$\sqrt{7}$km

分析 利用余弦定理解出.

解答 解:在△ABC中,由余弦定理得AC2=AB2+BC2-2AB•BC•cosB=400+1600+800=2800.
∴AC=$\sqrt{2800}$=20$\sqrt{7}$.
故选:D.

点评 本题考查了余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若F1,F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,A、C、D、B分别是此椭圆的左、右、上、下顶点,P是椭圆上一点.
(1)若∠F1PF2=60°,求△PF1F2的面积;
(2)若存在点P,使∠F1PF2=90°,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(2x+1)(2-x)6的展开式中,x6的系数为-23(数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,下列各表达式为常数的是(  )
A.sin(A+B)+sinCB.cos(A+B)-cosAC.sin2$\frac{A+B}{2}$+sin2$\frac{C}{2}$D.sin$\frac{A+B}{2}$sin$\frac{C}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数(a>0,b>0),且$\frac{1}{a}$+$\frac{2}{b}$=1,则当$\frac{2a+b}{8}$的最小值为m,函数f(x)=e-mx|lnx|-1的零点个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sinx(sinx+cosx),求f(x)的最小正周期和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=a+$\frac{2}{{2}^{x}+1}$(x∈R)是奇函数.
(1)求常数a的值;
(2)若f(x)>0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆M的对称轴为坐标轴,抛物线y2=4x的焦点F是椭圆M的一个焦点,且椭圆M的离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆M的方程;
(2)已知直线y=x+m与椭圆M交于A,B两点,且椭圆M上存在点P,满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,若f(8-m2)<f(2m),则实数m的取值范围是(-4,2).

查看答案和解析>>

同步练习册答案