精英家教网 > 高中数学 > 题目详情
1.数列{an}满足an=$\frac{1}{n(n+1)}$(n∈N*,则数列{an}的前100项和为$\frac{100}{101}$.

分析 直接利用裂项消项法求解数列的和即可.

解答 解:$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
数列{an}满足an=$\frac{1}{n(n+1)}$(n∈N*,则数列{an}的前100项和为:
1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}$+…+$\frac{1}{100}-\frac{1}{101}$
=1-$\frac{1}{101}$
=$\frac{100}{101}$.
故答案为:$\frac{100}{101}$.

点评 本题考查数列求和,裂项消项法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.极坐标方程ρ=4cosθ、ρsinθ=2表示的曲线分别是(  )
A.直线、直线B.圆、直线C.直线、圆D.圆、圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:Sn=$\frac{1}{2×5}$+$\frac{1}{5×8}$+…+$\frac{1}{(3n-1)(3n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于x的不等式(k2-2k-3)x2+(k+1)x+1>0(k∈R)的解集为M.
(1)若1∈M,求实数k的取值范围.
(2)若M=R,求实数k的取值范围.
(3)是否存在实数k,满足:“对任意n∈N,都有n∈M,对任意m∈Z-,都有m∉M”?若存在,试求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.使直线a,b为异面直线的充分不必要条件是(  )
A.a?平面α,b?平面α,a与b不平行
B.a?平面α,b?平面α,a与b不相交
C.a∥直线c,b∩c=A,b与a不相交
D.a?平面α,b?平面β,α∩β=l,a与b无公共点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x>0,x$\sqrt{1-{x}^{2}}$的最大值为$\frac{1}{2}$,此时x=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=$\sqrt{x}$+x在[2,+∞]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)对定义域I内任意实数x,都存在常数a,b满足f(2a-x)+f(x)=2b成立,则称函数f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=$\frac{{x}^{2}+mx+m}{x}$的图象关于点(0,1)对称,求证:m=1;
(2)在(1)的结论下,已知g(x)=-x2+kx+1,若对于任意的t∈(0,+∞)和x∈(0,+∞),都有g(x)<f(x)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义在R上的奇函数f(x)和g(x),满足F(x)=af(x)+bg(x)+2,且F(x)在区间(0,+∞)上的最大值是5,求F(x)在(-∞,0)上的最小值.

查看答案和解析>>

同步练习册答案