精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点为A、B,P是椭圆C上不与A、B重合的任意一点,设∠PAB=α,∠PBA=β,则(  )
A、sinα<cosβ
B、sinα>cosβ
C、sinα=cosβ
D、sinα与cosβ的大小不能确定
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),∠PAB=α,∠PBA=β,可得α+β<90°,即0°<α<90°-β<90°,利用正弦函数的单调性,即可得出结论.
解答: 解:∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),∠PAB=α,∠PBA=β,
∴α+β<90°,
∴0°<α<90°-β<90°,
∴sinα<sin(90°-β),
即sinα<cosβ.
故选A.
点评:本题考查椭圆的标准方程,考查三角函数知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

四边形ABCD是圆的内接四边形,已知A(0,0)、B(1,2)、C(m,0)、D(2,-1),则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若平面上的动点P(m,n)满足直线mx+ny-5=0与圆x2+y2=25没有公共点,过每一个这样的点P,任作一条直线总与椭圆C:
x2
9
+
y2
k
=1有公共点,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(3,4),
b
=(2,-1),且(
a
+x
b
)⊥(
a
-
b
)
,则实数x=(  )
A、23
B、
23
2
C、
23
3
D、
23
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<
π
2
,则
x
-
1
sinx
<0是
1
sinx
-x>0成立的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2+
1
2
x-(
1
2
n≥0(n∈N*),
(Ⅰ)求当n=1时,求不等式x2+
1
2
x-(
1
2
n≥0的解集;
(Ⅱ)当x∈(-∞,λ]时恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(x2+2x+
a
x
),x∈(0,+∞),若对任意x∈[1,+∞),f(x)恒有意义,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(1)求函数f(x)的最小值;
(2)若对一切x∈(0,+∞),都有f(x)≤x2-ax+2恒成立,求实数a的取值范围;
(3)试判断函数y=lnx-
1
ex
+
2
ex
是否有零点?若有,求出零点的个数;若无,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
ex-e-x
2
的奇偶性和值域.

查看答案和解析>>

同步练习册答案