精英家教网 > 高中数学 > 题目详情
已知0<x<
π
2
,则
x
-
1
sinx
<0是
1
sinx
-x>0成立的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据三角函数的性质,将不等式进行等价转化,利用充分条件和必要条件的定义进行判断.
解答: 解:当0<x<
π
2
,0<sinx<1,
则不等式
x
-
1
sinx
<0等价为
x
1
sinx

即sinx
x
<1,即x•sin2x<1,
不等式
1
sinx
-x>0等价为
1
sinx
>x,即x•sinx<1,
∵0<sinx<1,
∴若x•sinx<1,则x•sin2x<x•sinx<1,即x•sin2x<1成立.
若xsin2x<1,不能推出xsinx<1成立,故充分性不成立.
x
-
1
sinx
<0是
1
sinx
-x>0成立的必要不充分条件.
故选:C.
点评:本题主要考查充分条件和必要条件的判断,将不等式转化为xsin2x<1与xsinx<1的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log2(2x+1)+kx(k为常数)是偶函数.
(1)求k的值;
(2)设g(x)=log2((
2
x+2+a)+log2
2
2
x,当f(x)=g(x)时,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={x|x2-5x-6<0},T={x||x+2|≤3},则S∩T=(  )
A、{x|-5≤x<-1}
B、{x|-5≤x<5}
C、{x|-1<x≤1}
D、{x|1≤x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x-
1
x
,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是(  )
A、(-1,1)
B、(1,+∞)
C、(-∞,-1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点为A、B,P是椭圆C上不与A、B重合的任意一点,设∠PAB=α,∠PBA=β,则(  )
A、sinα<cosβ
B、sinα>cosβ
C、sinα=cosβ
D、sinα与cosβ的大小不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-ax+a2-19=0},B={2,3},C={-4,2}.
(1)若∅为A∩B的真子集,A∩C=∅,求a的值;
(2)若A为B的子集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

x
+
y
≤k 
x+y
对一切x,y∈R都成立,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是等差数列,若{an}中存在一项可以表示为该数列的连续三项之和,则称数列{an}为“可拆数列”.
(1)若{an}为递增的“可拆数列”,且各项为整数,a1=5,求公差d的取值集合;
(2)若{an}公差不为零且存在正整数m使am+1,a2m,a3m成等比数列,求证{an}为“可拆数列”;
(3)若{an}为“可拆数列”且a1=2k(k∈N+),Sn表示数列{an}的前n项和,当{an}公差最大时,求满足200Sk>ak2的正整数k的最大值.

查看答案和解析>>

同步练习册答案