| A. | (2,4) | B. | (0,2) | C. | (-∞,2) | D. | (2,+∞) |
分析 求出f(x)的解析式,可得y=f(4x-x2)的表达式,可求增区间.
解答 解:函数y=f(x)与y=3-x的图象关于直线y=x对称,可知:他们互为反函数,
∴y=f(x)=-log3x=$lo{g}_{\frac{1}{3}}x$
那么:f(4x-x2)=$lo{g}_{\frac{1}{3}}(4x-{x}^{2})$,
令t=4x-x2
∵t>0
∴0<x<4.
∵f(x)在其定义域内是单调减函数,
而t=4x-x2在(0,2)上单调递增,在(2,4)单调递减.
则复合函数函数y=f(4x-x2)的增区间为(2,4).
故选A.
点评 本题考察了反函数的求法和对数函数的单调性的运用,以及复合函数的单调性的判断,依据是“同增异减”.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | 1 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | e | C. | $\frac{1}{e}$ | D. | e2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14斛 | B. | 28斛 | C. | 36斛 | D. | 66斛 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com