分析 设椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的右焦点为E,由已知推导出PE=8,PF=2,EF=8,利用余弦定理求出cos∠PFE,由此能求出直线PF的斜率.
解答
解:如图,设椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的右焦点为E
∵P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上位于x轴上方的一点,F是椭圆的左焦点,O为原点,Q为PF的中点,且|OQ|=4,
∴OQ是△PEF的中位线,∴PE=2OQ=8,
∴PF=2a-8=2×5=8=2,EF=2c=8,
∴cos∠PFE=$\frac{P{F}^{2}+E{F}^{2}-P{E}^{2}}{2PF•EF}$=$\frac{4+64-64}{2×2×8}$=$\frac{1}{8}$,
∴sin∠PFE=$\sqrt{1-\frac{1}{64}}$=$\frac{\sqrt{63}}{8}$,∴tan∠PFE=$\sqrt{63}$.
∴直线PF的斜率为$\sqrt{63}$.
故答案为:$\sqrt{63}$.
点评 本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | α=$\frac{π}{3}$,β=-$\frac{π}{3}$ | B. | α=$\frac{π}{3}$,β=$\frac{2π}{3}$ | C. | α=$\frac{π}{5}$,β=-$\frac{7π}{10}$ | D. | α=$\frac{π}{3}$,β=-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com