17£®2017Äê¡°Ò»´øÒ»Â·¡±¹ú¼ÊºÏ×÷¸ß·åÂÛ̳ÓÚ½ñÄê5ÔÂ14ÈÕÖÁ15ÈÕÔÚ±±¾©¾ÙÐУ®Îª¸ß±ê×¼Íê³É¸ß·åÂÛ̳»áÒéÆÚ¼äµÄÖ¾Ô¸·þÎñ¹¤×÷£¬½«´Ó27Ëù±±¾©¸ßУÕÐļ´óѧÉúÖ¾Ô¸Õߣ¬Ä³µ÷²é»ú¹¹´ÓÊÇ·ñÓÐÒâÔ¸×öÖ¾Ô¸ÕßÔÚij¸ßУ·ÃÎÊÁË80ÈË£¬¾­¹ýͳ¼Æ£¬µÃµ½Èç϶ªÊ§Êý¾ÝµÄÁÐÁª±í£º£¨a£¬b£¬d£¬A£¬B£¬±íʾ¶ªÊ§µÄÊý¾Ý£©
 ÎÞÒâÔ¸ÓÐÒâÔ¸×ܼÆ
ÄÐab40
Ů5dA
×ܼÆ25B80
£¨¢ñ£©Çó³öa£¬b£¬d£¬A£¬BµÄÖµ£¬²¢ÅжϣºÄÜ·ñÓÐ99.9%µÄ°ÑÎÕÈÏΪÓÐÒâÔ¸×öÖ¾Ô¸ÕßÓëÐÔ±ðÓйأ»
£¨¢ò£©Èô±íÖÐÎÞÒâÔ¸×öÖ¾Ô¸ÕßµÄ5¸öŮͬѧÖУ¬3¸öÊÇ´óѧÈýÄ꼶ͬѧ£¬2¸öÊÇ´óѧËÄÄ꼶ͬѧ£®ÏÖ´ÓÕâ5¸öͬѧÖÐËæ»úÑ¡2ͬѧ½øÐнøÒ»²½µ÷²é£¬ÇóÕâ2¸öͬѧÊÇͬÄê¼¶µÄ¸ÅÂÊ£®
¸½²Î¿¼¹«Ê½¼°Êý¾Ý£º${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬ÆäÖÐn=a+b+c+d£®
P£¨K2¡Ýk0£©0.400.250.100.0100.0050.001
k00.7081.3232.7066.6357.87910.828

·ÖÎö £¨¢ñ£©ÓɱíÖÐÊý¾ÝËãµÃa¡¢b¡¢A¡¢dºÍBµÄÖµ£¬ÔÙ¼ÆËãK2µÄ¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨¢ò£©ÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËãËùÇóµÄ¸ÅÂÊÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓɱíÖÐÊý¾ÝµÃa=25-5=20£¬
b=40-a=20£¬
A=80-40=40£¬
d=A-5=35£¬
B=80-25=55£¬¡­£¨3·Ö£©
¼ÆËãK2µÄ¹Û²âÖµ${k_0}=\frac{{80{{£¨{20¡Á35-5¡Á20}£©}^2}}}{40¡Á40¡Á25¡Á55}¡Ö13.09£¾10.828$£¬¡­£¨5·Ö£©
¡à99.9%µÄ°ÑÎÕÈÏΪÓÐÒâÔ¸×öÖ¾Ô¸ÕßÓëÐÔ±ðÓйأ»¡­£¨6·Ö£©
£¨¢ò£©¼Ç3¸ö´óÈýͬѧ·Ö±ðΪA1¡¢A2¡¢A3£¬2¸ö´óËÄͬѧ·Ö±ðΪB1¡¢B2£¬
Ôò´ÓÖгéÈ¡2¸öµÄ»ù±¾Ê¼þÓУº
A1A2£¬A1A3£¬A2A3£¬A1B1£¬A2B1£¬A3B1£¬A1B2£¬A2B2£¬A3B2£¬B1B2¹²10¸ö£¬¡­£¨8·Ö£©
ÆäÖгéÈ¡µÄ2¸öÊÇͬһÄê¼¶µÄ»ù±¾Ê¼þÓУº
A1A2£¬A1A3£¬A2A3£¬B1B2¹²4¸ö£¬¡­£¨9·Ö£©
ÔòËùÇóµÄ¸ÅÂÊΪ$\frac{4}{10}=\frac{2}{5}$£®       ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÓëÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{cosx-1}{\sqrt{3-2\sqrt{2}sin£¨x+\frac{¦Ð}{4}£©}}$£¨x¡Ê[0£¬2¦Ð£©£©£¬Ôòf£¨x£©µÄÖµÓòÊÇ£¨¡¡¡¡£©
A£®[-$\frac{\sqrt{3}}{3}$£¬0]B£®[-1£¬1]C£®[-1£¬0]D£®[-$\sqrt{2}$£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªOÎª×ø±êÔ­µã£¬Å×ÎïÏßC£ºy2=nx£¨n£¾0£©ÔÚµÚÒ»ÏóÏÞÄڵĵãP£¨1£¬t£©µ½½¹µãµÄ¾àÀëΪ2£¬ÇúÏßCÔÚµãP´¦µÄÇÐÏß½»xÖáÓÚµãQ£¬Ö±Ïßl1¾­¹ýµãQÇÒ´¹Ö±ÓÚxÖᣮ
£¨¢ñ£©ÇóÏß¶ÎOQµÄ³¤£»
£¨¢ò£©Éè²»¾­¹ýµãPºÍQµÄ¶¯Ö±Ïßl2£ºx=my+b½»ÇúÏßCÓÚµãAºÍB£¬½»l1ÓÚµãE£¬ÈôÖ±ÏßPA£¬PE£¬PBµÄбÂÊÒÀ´Î³ÉµÈ²îÊýÁУ¬ÊÔÎÊ£ºl2ÊÇ·ñ¹ý¶¨µã£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Å×ÎïÏßx2=2py£¨p£¾0£©µÄ½¹µãΪF£¬Æä×¼ÏßÓëË«ÇúÏß$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1ÏཻÓÚA£¬BÁ½µã£¬Èô¡÷ABFΪµÈ±ßÈý½ÇÐΣ¬ÔòpµÄֵΪ£¨¡¡¡¡£©
A£®2B£®4C£®6D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªa£¾0£¬b£¾0£¬$\frac{1}{a}$$+\frac{3}{b}$=2£¬Ôòa+2bµÄ×îСֵΪ£¨¡¡¡¡£©
A£®7+2$\sqrt{6}$B£®$\frac{7}{2}$+$\sqrt{6}$C£®5$+2\sqrt{6}$D£®$\frac{5}{2}+\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ËÄÀâ×¶P-ABCDµÄµ×ÃæÊÇÆ½ÐÐËıßÐΣ¬PA¡ÍÆ½ÃæABCD£¬AC¡ÍAB£¬AB=PA£¬µãEÊÇPDÉϵĵ㣬ÇÒDE=¦ËEP£¨0£¼¦Ë¡Ü1£©£®
£¨¢ñ£©ÇóÖ¤£ºPB¡ÍAC£»
£¨¢ò£©ÈôPB¡ÎÆ½ÃæACE£¬Çó¦ËµÄÖµ£»
£¨¢ó£©Èô¶þÃæ½ÇE-AC-PµÄ´óСΪ60¡ã£¬Çó¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªA£¬D·Ö±ðÊÇÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¶¥µãºÍÉ϶¥µã£¬µãPÊÇÏß¶ÎADÉϵÄÈÎÒâÒ»µã£¬µãF1£¬F2·Ö±ðÊÇÍÖÔ²µÄ×ó£¬ÓÒ½¹µã£¬ÇÒ$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$µÄ×î´óÖµÊÇ1£¬×îСֵÊÇ-$\frac{11}{5}$£¬ÔòÍÖÔ²µÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
A£®x2+$\frac{{y}^{2}}{2}$=1B£®x2+$\frac{{y}^{2}}{4}$=1C£®$\frac{{x}^{2}}{2}$+y2=1D£®$\frac{{x}^{2}}{4}$+y2=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÔ²C1£ºx2+y2+6x=0¹ØÓÚÖ±Ïßl1£ºy=2x+1¶Ô³ÆµÄԲΪC
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©¹ýµã£¨-1£¬0£©×÷Ö±ÏßÓëÔ²C½»ÓÚA£¬BÁ½µã£¬OÊÇ×ø±êÔ­µã£¬ÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïߣ¬Ê¹µÃÔÚÆ½ÐÐËıßÐÎOASBÖÐ|$\overrightarrow{OS}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|£¿Èô´æÔÚ£¬Çó³öËùÓÐÂú×ãÌõ¼þµÄÖ±Ïߵķ½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÉèOÎª×ø±êÔ­µã£¬Ö±Ïßl£ºx-y+m=0ÓëÔ²C£ºx2-2x+y2-7=0½»ÓÚM£¬NÁ½µã£¬ÓëxÖᣬyÖá½»ÓÚA£¬BÁ½µã£¬ÇÒ$\sqrt{3}$|$\overrightarrow{MN}$|=3|$\overrightarrow{OM}$+$\overrightarrow{ON}$|£¬µãPÔÚÖ±ÏßlÉÏ£¬Âú×ã$\overrightarrow{AP}$=¦Ë$\overrightarrow{PB}$£¬Èô$\overrightarrow{PO}$•$\overrightarrow{PC}$=3£¬Ôò¦ËµÄֵΪ4¡À$\sqrt{17}$»ò-3$¡À\sqrt{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸