精英家教网 > 高中数学 > 题目详情
8.已知A,D分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点和上顶点,点P是线段AD上的任意一点,点F1,F2分别是椭圆的左,右焦点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,最小值是-$\frac{11}{5}$,则椭圆的标准方程为(  )
A.x2+$\frac{{y}^{2}}{2}$=1B.x2+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$+y2=1D.$\frac{{x}^{2}}{4}$+y2=1

分析 由题意$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,可得a2-c2=1,即b=1,利用$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的是最小值是-$\frac{11}{5}$,解得a,b,即可求椭圆方程.

解答 解:由题意$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,
可得a2-c2=1,即b=1,
∴AD的方程为y=$\frac{x}{a}$+1,
设P(x,y)(-a≤x≤0),
则$\overrightarrow{P{F}_{1}}$=(x+c,y)•(x-c,y)=x2-c2+y2=(1+$\frac{1}{{a}^{2}}$)(x+$\frac{a}{1+{a}^{2}}$)2-$\frac{{a}^{4}-{a}^{2}-1}{1+{a}^{2}}$,
∵$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值是-$\frac{11}{5}$,
∴-$\frac{{a}^{4}-{a}^{2}-1}{1+{a}^{2}}$=-$\frac{11}{5}$,
∴a=2,b=1,
所求的椭圆的方程为:$\frac{{x}^{2}}{4}$+y2=1.
故选:D.

点评 本题考查了椭圆的标准方程及其性质、向量的数量积的坐标表示,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知定义在R上的函数f(x)满足f′(x)-f(x)=(1-2x)e-x,且f(0)=0.
则下列命题正确的是①②③.(写出所有正确命题的序号)
①R有极大值,没有极小值;
②设曲线f(x)上存在不同两点A,B处的切线斜率均为k,则k的取值范围是-$\frac{1}{{e}^{2}}$<k<0;
③对任意x1,x2,∈(2,+∞)都有f($\frac{{x}_{1}{+x}_{2}}{2}$)≤$\frac{{f(x}_{1})+f{(x}_{2})}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“α=$\frac{π}{3}$“是“cosα=$\frac{1}{2}$“成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(a,b,d,A,B,表示丢失的数据)
 无意愿有意愿总计
ab40
5dA
总计25B80
(Ⅰ)求出a,b,d,A,B的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(Ⅱ)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附参考公式及数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.400.250.100.0100.0050.001
k00.7081.3232.7066.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.当x∈[0,π]时,函数y=sin($\frac{π}{2}$-x)+sin(π-x)最大值与最小值的积是$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有一块边长为8m的正方形钢板,将其四个角各截去一个边长为xm的小正方形,然后焊接成一个无盖的蓄水池.
(1)写出以x为自变量的蓄水池容积V的函数解析式V(x),并求函数V(x)的定义域;
(2)蓄水池的底边为多少时,蓄水池的容积最大,并求出最大容积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.抛物线y=x2的对称轴是(  )
A.3B.0C.y=0D.x=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,椭圆C:x2+3y2=3b2(b>0)
(Ⅰ)若长轴长与短轴长的差为4$\sqrt{3}$-4,求椭圆方程
(Ⅱ)若b=1,A,B是椭圆C上的两点,且|AB|=$\sqrt{3}$,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平行四边形ABCD中,∠ABC=60°,AB=1,BC=2,则$\overrightarrow{BA}$$•\overrightarrow{BD}$=(  )
A.1B.2C.1$+\sqrt{3}$D.-2

查看答案和解析>>

同步练习册答案