精英家教网 > 高中数学 > 题目详情
20.某车站在春运期间为了改进服务,随机抽样调查了若干名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位为min),下表和下图是这次调查统计分析所得到的频率分布表和频率分布直方图,解答下列问题:
组别分组频数频率
一组0≤t<500
二组5≤t<10100.10
三组10≤t<1510y
四组15≤t<20x0.50
五组20≤t<25300.30
(1)试确定x,y的值并补全频率分布直方图.
(2)写出旅客购票用的平均时间和该样本中位数和众数.

分析 (1)由题意可知样本容量为100,由此能确定x,y的值并补全频率分布直方图.
(2)利用频率分布直方图能求出旅客购票用的平均时间和该样本中位数和众数.

解答 解:(1)由题意可知样本容量为100,
∴x=100-10-10-30=50,y=1-0.10-0.50-0.30=0.10,
频率分布直方图如图所示.….…(6分)

(2)旅客平均购票时间为:2.5×0+7.5×0.1+12.5×0.1+17.5×0.5+22.5×0.3=17.5
∵[15,20)内对应的小矩形最高,
∴样本的众数为:$\frac{15+20}{2}$=17.5,
∵[5,15)内的频率为(0.02+0.02)×5=0.2,
[15,20)内的频率为0.1×5=0.5,
∴中位数为15+$\frac{0.5-0.2}{0.5}×5$=18….…(12分)

点评 本题考查平均数、众数、中位数的求法,考查频率分布表、频率分布直方图的应用,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.抛物线x2=4y的焦点到准线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.甲、乙、丙三人各自独立的破译一个密码,假定它们译出密码的概率都是$\frac{1}{5}$,且相互独立,则至少两人译出密码的概率为$\frac{13}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设A(x1,y1),B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线,
(Ⅰ)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;
(Ⅱ)若OA⊥OB,弦AB是否过定点,若过定点,求出该定点,若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)求函数f(x)的单调区间;
(2)若函数f(x)满足:
①对任意的m1,m2,m1≠m2,当f(m1)=f(m2)时,有m1+m2<0成立;
②对?x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an},Sn为数列{an}的前n项和,若Sn=an2+4n+a-4(a∈R),则实数a的值为(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有正整数组成的等差数列{an}和{bn}的前n项分别是Sn和Tn,且$\frac{{a}_{n}}{{b}_{n}}$=$\frac{2n-1}{3n+1}$,则$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={1,2,3,4,5},集合B={x∈Z|x2-4x-5<0},则A∩B的元素个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知一次函数f(x)的图象关于直线x-y=0对称的图象为C,且f(f(1))=-1,若点$({n,\frac{{{a_{n+1}}}}{a_n}})({n∈{N^*}})$在曲线C上,并有${a_1}=1,\frac{{{a_{n+1}}}}{a_n}-\frac{a_n}{{{a_{n-1}}}}=1({n≥2})$.
(1)求f(x)的解析式及曲线C的方程; 
(2)求数列{an}的通项公式;
(3)设${S_n}=\frac{a_1}{3!}+\frac{a_2}{4!}+\frac{a_3}{5!}+…+\frac{a_n}{{({n+2})!}}$,求$\lim_{n→∞}{S_n}$的值.

查看答案和解析>>

同步练习册答案