精英家教网 > 高中数学 > 题目详情
y=Asin(ωx+φ)的曲线最高点为(2,
2
),离它最近的一个最低点是(10,-
2
),则它的解析式为(  )
A、f(x)=
2
sin(
x
8
+
π
4
B、f(x)=
2
sin(
π
8
x+
π
4
C、f(x)=
2
sin(
x
8
-
π
4
)
D、f(x)=-
2
sin(
π
8
x-
π
4
)
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式.
解答: 解:由题意可得A=
2
1
2
T=10-2=8=
π
ω
,求得ω=
π
8

再根据五点法作图可得
π
8
×2+φ=
π
2
,求得φ=
π
4

∴f(x)=
2
sin(
π
8
x+
π
4
),
故选:B.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(  )
A、12cm3
B、24cm3
C、
24
3
cm3
D、40cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹可能是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知8b=5c,C=2B,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2k-1)x+2在R上是减函数,则实数k的取值范围为(  )
A、k<-
1
2
B、k>-
1
2
C、k<
1
2
D、k>
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,nan+1=(n+1)an+n2+n,n∈N*).
(1)证明:数列{
an
n
}是等差数列;
(2)设an=(
2nbn
32n+1
2,求正项数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2+2n.数列{bn}中,b1=1,它的第n项bn是数列{an}的第bn-1项(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若对任意的n∈N*,不等式
1
b1+1
+
1
b2+1
+
1
b3+1
+…+
1
bn+1
<m2-m+1恒成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M过定点(2,0)且圆心M在抛物线y2=4x上运动,若y轴截圆M所得的弦长为AB,则弦长|AB|等于(  )
A、4B、3
C、2D、与点M位置有关的值

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,
1
3
S3
1
4
S4的等比中项与等差中项分别为
1
5
S5和1,求此数列的通项公式.

查看答案和解析>>

同步练习册答案