精英家教网 > 高中数学 > 题目详情
12.如图四棱锥P-ABCD的底面ABCD是菱形,PA⊥底面ABCD,E,F分别是AC,PB的中点,PA=AB=2,∠BAD=120°.
(1)证明:EF∥平面PCD;
(2)求EF与平面PAC所成角的正弦值.

分析 (Ⅰ)欲证EF∥平面PCD,根据直线与平面平行的判定定理可知只需证EF与平面PCD内一直线平行即可,连接BD,根据中位线可知EF∥PD,而EF不在平面PCD内,满足定理所需条件;
(Ⅱ)连接PE,根据题意可知BD⊥AC,又PA⊥平面ABC,则PA⊥BD,从而BD⊥平面PAC,根据线面所成角的定义可知∠EPD是PD与平面PAC所成的角,而EF∥PD,则EF与平面PAC所成的角的大小等于∠EPD,在Rt△PED中,求出此角即可.

解答 (Ⅰ)证明:如图,连接BD,则E是BD的中点.
又F是PB的中点,
所以EF∥PD.
因为EF不在平面PCD内,
所以EF∥平面PCD.(6分)
(Ⅱ)解:连接PE.
因为ABCD是菱形,
所以BD⊥AC.
又PA⊥平面ABC,
所以PA⊥BD.
因此BD⊥平面PAC.
因为EF∥PD,
EF与平面PAC所成角就是PD与平面PAC所成的角.
故∠EPD是PD与平面PAC所成的角.
所以EF与平面PAC所成的角的大小等于∠EPD.
因为PA=AB=2,∠BAD=120°,DE=$\sqrt{3}$,PE=$\sqrt{5}$.
在Rt△PED中,PD=2$\sqrt{2}$.
sin∠EPD=$\frac{DE}{PD}$=$\frac{\sqrt{3}}{2\sqrt{2}}$=$\frac{\sqrt{6}}{4}$,
所以EF与平面PAC所成角的所成角的正弦值为:$\frac{\sqrt{6}}{4}$.(14分)

点评 本题主要考查空间线线、线面、面面位置关系,线面角大小计算,同时考查空间想象能力和推理论证能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输入的x的值为3,则输出的y的值为(  )
A.1B.3C.9D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.抛物线C1:y2=2px(p>0)与双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,\;b>0)$交于A,B两点,C1与C2的两条渐近线分别交于异于原点的两点C,D,且AB,CD分别过C2,C1的焦点,则$\frac{|AB|}{|CD|}$=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,若4Sn=(2n-1)an+1+1,且a1=1.
(Ⅰ)证明:数列{an}是等差数列,并求出{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{{a_n}\sqrt{S_n}}}$,数列{bn}的前n项和为Tn,证明:Tn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C中心在坐标原点,对称轴为坐标轴,且过点A(2$\sqrt{6}$,2)、B(3,3).
(Ⅰ) 求椭圆C的方程;
(Ⅱ)椭圆C上的任一点M(x1,y1),过原点O向半径为r的圆M作两条切线,是否存在r使得两条切线的斜率之积s为定值,若是,求出r,s值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知2B=A+C,a+$\sqrt{2}$b=2c,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a是f(x)=sinx-xcosx在x∈(0,2π)的一个零点,则?x∈(0,2π),下列不等式恒成立的是(  )
A.$\frac{sinx}{x}≥\frac{sina}{a}$B.cosa≥$\frac{sinx}{x}$C.$\frac{3π}{2}$≤a≤2πD.a-cosa≥x-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若数列{an}满足“对任意正整数n,$\frac{{{a_n}+{a_{n+2}}}}{2}≤{a_{n+1}}$恒成立”,则称数列{an}为“差非增数列”.
给出下列数列{an},n∈N*
①an=2n+$\frac{1}{n}$+1,②an=n2+1,③an=2n+1,④an=ln$\frac{n}{n+1}$,⑤an=2n+$\frac{1}{n}$.
其中是“差非增数列”的有③④(写出所有满足条件的数列的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=4,动直线l1:x-ky+2k=0和l2:kx+y-4k=0(k∈R).
(1)试判断直线l1和圆O的位置关系,并说明理由;
(2)已知直线l2与圆O相交,直线l1被圆O截得的弦的中点为M,求动点M的轨迹方程.

查看答案和解析>>

同步练习册答案