精英家教网 > 高中数学 > 题目详情
6.已知等轴双曲线经过点M(5,-4),则它的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{9}=1$B.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1
C.$\frac{x^2}{9}-\frac{y^2}{9}=1$或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{x}^{2}}{41}$-$\frac{{y}^{2}}{41}$=1

分析 设对称轴在坐标轴上的等轴双曲线的方程为x2-y2=λ(λ≠0),代入M的坐标,可得双曲线的标准方程.

解答 解:设对称轴在坐标轴上的等轴双曲线的方程为x2-y2=λ(λ≠0),
将点M(5,-4),代入可得25-16=λ,
∴λ=9,
∴方程为x2-y2=9,即$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{9}$=1.
故选:A.

点评 本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.过点$P(-\sqrt{3},-1)$的直线l与圆x2+y2=1有两个不同的公共点,则直线l的斜率的取值范围是(  )
A.$(0,\frac{{\sqrt{3}}}{3})$B.$[0,\sqrt{3}]$C.$[\frac{{\sqrt{3}}}{3},\sqrt{3})$D.$(0,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)化简:$\frac{{cos(α+\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}•cos(α-π)+\frac{sin(-α)}{tan(α+π)}$;
(2)已知tanα=2,求$\frac{sinα+2cosα}{2sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算:$\frac{2cos10°}{sin70°}$-tan20°=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知复数Z1满足(Z1-2)(1+i)=1-i(i为虚数单位),复数Z2的虚部为1,Z1•Z2是实数,求Z2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{{x}^{3}}{3}$-(a+1)x2+4ax+b,其中a,b∈R.
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)若函数f(x)在(-1,1)内有且只有一个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x(x<0)}\\{\frac{ln(x+1)}{x+1},(x≥0)}\end{array}\right.$,参数k∈[-1,1],则方程f(x)-kx-k=0有四个实数根的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{2e}$D.$\frac{1}{4e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,∠B为直角,DE⊥AB于E,AC⊥DC,设BC=1.
(1)若∠BAC=30°,∠DAC=45°,试求△ADE的各边之长,由此推出75°的三角函数值;
(2)设∠BAC=α,∠DAC=β(α、β,α+β均为锐角),试推出sin(α+β)的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,设甲地到乙地有4条路可走,乙地到丙地有5条路可走,那么由甲地经乙地到丙地,再由丙地经乙地到甲地,共有400种不同的走法.

查看答案和解析>>

同步练习册答案