精英家教网 > 高中数学 > 题目详情
14.计算:$\frac{2cos10°}{sin70°}$-tan20°=$\sqrt{3}$.

分析 将所求关系式中的“切”化“弦”,再利用两角差的余弦化cos10°=cos(30°-20°),整理运算即可.

解答 解:原式=$\frac{2cos10°}{sin70°}-\frac{sin20°}{cos20°}$=$\frac{2cos(30°-20°)-sin20°}{cos20°}$=$\frac{2cos30°cos20°+2sin30°sin20°-sin20°}{cos20°}$=2cos30°=2×$\frac{\sqrt{3}}{2}=\sqrt{3}$;
故答案为:$\sqrt{3}$.

点评 本题考查三角函数的化简求值,“切”化“弦”之后化cos10°=cos(30°-20°)是关键,考查转化思想与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如图:二面角α-l-β的大小是60°,线段AB?α,B∈l,AB与l所成角为45°,则AB与平面β所成角的正弦值是$\frac{\sqrt{6}}{4}$.    

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知某四棱锥的三视图(单位:cm)如图所示,则该四棱锥的体积是(  )
A.$\frac{{\sqrt{3}}}{3}c{m^3}$B.$\frac{{4\sqrt{3}}}{3}c{m^3}$C.$\frac{{8\sqrt{3}}}{3}c{m^3}$D.$\sqrt{3}c{m^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知p:|x-4|≤6,q:x2-2x+1-m2≤0(m>0).若q是p的充分而不必要条件,则m的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用火柴棒摆“金鱼”,如图所示:

按照上面的规律,第10个“金鱼”图需要火柴棒的根数为(  )
A.58B.78C.62D.82

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列四组函数中,表示同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$与y=xB.y=x0与y=1
C.y=2${\;}^{lo{g}_{4}x}$与y=$\frac{x}{\sqrt{x}}$D.y=x与y=($\sqrt{x})^{2}$2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等轴双曲线经过点M(5,-4),则它的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{9}=1$B.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1
C.$\frac{x^2}{9}-\frac{y^2}{9}=1$或$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{x}^{2}}{41}$-$\frac{{y}^{2}}{41}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若向量$\overrightarrow a$,$\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=\sqrt{10}$,$|\overrightarrow a-\overrightarrow b|=\sqrt{6}$,则$\overrightarrow a$•$\overrightarrow b$=(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数$\frac{2}{1+i}$的虚部为-1,共轭复数1+i.

查看答案和解析>>

同步练习册答案