精英家教网 > 高中数学 > 题目详情
20.将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位后的图形关于原点对称,则函数f(x)在[0,$\frac{π}{2}$]上的最小值为-$\frac{\sqrt{3}}{2}$.

分析 根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得 φ 的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[0,$\frac{π}{2}$]上的最小值.

解答 解:将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位后,得到y=sin(2x+$\frac{π}{3}$+φ)的图象,
再根据所得图象关于原点对称,可得$\frac{π}{3}$+φ=kπ,即 φ=kπ-$\frac{π}{3}$,k∈Z,又|φ|<$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$,f(x)=sin(2x-$\frac{π}{3}$).
∵x∈[0,$\frac{π}{2}$],∴2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],故当2x-$\frac{π}{3}$=-$\frac{π}{3}$时,f(x)取得最小值为-$\frac{\sqrt{3}}{2}$,
故答案为:-$\frac{\sqrt{3}}{2}$.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知e为自然对数的底数,曲线y=aex+x在点(1,ae+1)处的切线与直线2ex-y-1=0平行,则实数a=(  )
A.$\frac{e-1}{e}$B.$\frac{2e-1}{e}$C.$\frac{e-1}{2e}$D.$\frac{2e-1}{2e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于定义在区间D上的函数f(x),若任给x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.
(1)试判断f(x)=x-1在区间[-2,1]上是否封闭,并说明理由;
(1)若函数g(x)=$\frac{3x+a}{x+1}$在区间[3,10]上封闭,求实数a的取值范围;
(3)已知a<b,是否存在a,b,使函数h(x)=|1-$\frac{1}{x}$|在区间[a,b]上封闭?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a•$\frac{lnx-x+2}{x}$
(I)若函数f(x)在点(1,f(x))处的切线过点(0,4),求函数f(x)的最大值
(Ⅱ)当a<l时,若函数g(x)=xf(x)+x2-2x+2在区间($\frac{1}{2}$,2)内有且只有一个零点,求实数a的取值范围.(参考数值:ln2≈0.7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a,b∈R,则“log2a>log2b”是“2a-b>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,若(a-2i)•i=b-i(a,b∈R),则a2+b2=(  )
A.0B.2C.5D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)为偶函数,且f(x)=x2-$\frac{1}{x}$(x>0),则f′(-1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列结论错误的是(  )
A.命题“若p,则¬q”与命题“若q,则¬p”互为逆否命题
B.命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则p∧q为真
C.“若am2<bm2,则a<b”为真命题
D.“a>0,b>0”是“$\frac{a+b}{2}$≥$\sqrt{ab}$”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=loga(x+$\frac{a}{x}$-1)(a>0且a≠1)的值域为R,则实数a的取值范围是0<a≤$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案