分析 根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得 φ 的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[0,$\frac{π}{2}$]上的最小值.
解答 解:将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位后,得到y=sin(2x+$\frac{π}{3}$+φ)的图象,
再根据所得图象关于原点对称,可得$\frac{π}{3}$+φ=kπ,即 φ=kπ-$\frac{π}{3}$,k∈Z,又|φ|<$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$,f(x)=sin(2x-$\frac{π}{3}$).
∵x∈[0,$\frac{π}{2}$],∴2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],故当2x-$\frac{π}{3}$=-$\frac{π}{3}$时,f(x)取得最小值为-$\frac{\sqrt{3}}{2}$,
故答案为:-$\frac{\sqrt{3}}{2}$.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{e-1}{e}$ | B. | $\frac{2e-1}{e}$ | C. | $\frac{e-1}{2e}$ | D. | $\frac{2e-1}{2e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若p,则¬q”与命题“若q,则¬p”互为逆否命题 | |
| B. | 命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则p∧q为真 | |
| C. | “若am2<bm2,则a<b”为真命题 | |
| D. | “a>0,b>0”是“$\frac{a+b}{2}$≥$\sqrt{ab}$”的充分不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com