精英家教网 > 高中数学 > 题目详情
16.已知椭圆的中心是原点O,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,短轴长为2,定点A(2,0).
(Ⅰ)求椭圆方程;
(Ⅱ)过椭圆右焦点F的直线与椭圆交于点M、N,当|MN|最小时,求△AMN的面积.

分析 (Ⅰ)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),运用离心率公式和a,b,c的关系,求得a,b,进而得到椭圆方程;
(Ⅱ)设点A到直线MN的距离为d,则△AMN的面积=$\frac{1}{2}$|MN|d,其中|MN|可以利用弦长公式求得,利用函数求最值,进而得到所求面积.

解答 解:(Ⅰ)设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,b=1,
由a2-b2=c2,解得a=$\sqrt{2}$,c=1,
即有椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1;
(Ⅱ)椭圆的右焦点F(1,0),
设直线MN的方程是x=my+1,与x2+2y2=2联立,
可得(m2+2)y2+2my-1=0,
设M(x1,y1),N(x2,y2),则x1=my1+1,x2=my2+1,
由题意y1,y2满足方程(m2+2)y2+2my-1=0,
△=4m2+4(m2+2)>0即m2+1>0,
则方程根与系数的关系可得:y1+y2=-$\frac{2m}{2+{m}^{2}}$,y1y2=-$\frac{1}{2+{m}^{2}}$,
即有|MN|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=$\sqrt{1+{m}^{2}}$•|y1-y2|,
又|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{(\frac{-2m}{2+{m}^{2}})^{2}+\frac{4}{2+{m}^{2}}}$=$\frac{2\sqrt{2}\sqrt{1+{m}^{2}}}{2+{m}^{2}}$,
则|MN|=$\frac{2\sqrt{2}({m}^{2}+1)}{{m}^{2}+2}$,令t=1+m2(t≥1),
即有|MN|=$\frac{2\sqrt{2}t}{1+t}$=$\frac{2\sqrt{2}}{1+\frac{1}{t}}$≥$\frac{2\sqrt{2}}{1+1}$=$\sqrt{2}$,
当t=1即m=0时,|MN|取得最小值$\sqrt{2}$,
点A(2,0)到直线MN的距离d=$\frac{1}{\sqrt{1+{m}^{2}}}$=1,
于是△AMN的面积S=$\frac{1}{2}$|MN|d
=$\frac{\sqrt{2({m}^{2}+1)}}{2+{m}^{2}}$=$\frac{\sqrt{2}}{2}$,
故△AMN的面积是$\frac{\sqrt{2}}{2}$.

点评 本题考查椭圆的方程的求法和运用,同时考查直线和椭圆方程联立,运用韦达定理和判别式,以及弦长公式,考查运算化简能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图所示,建立空间直角坐标系Dxyz,已知正方体ABCD-A1B1C1D1的棱长为1,点M是正方体对角线D1B的中点,点N在棱CC1上.
(1)当2|C1N|=|NC|时,求|MN|;
(2)当点N在棱CC1上移动时,求|MN|的最小值并求此时的N点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,设P是上半椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(y≥0)上任意一点,F为右焦点,PF的最小值是$\sqrt{2}$-1,离心率是$\frac{\sqrt{2}}{2}$,上半椭圆C与x轴交于点A1,A2
(1)求出a2,b2的值;
(2)设P是上半椭圆C上位于第一象限内的任意一点,过A2作A2R⊥A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过焦点在x轴上的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{16}$=1的右焦点F2的直线交椭圆于A,B两点,F1是椭圆的左焦点,若△AF1B的周长为20,则实数m的值为(  )
A.5B.25C.10D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,菱形ABCD中,∠BAD=60°,边长AB=2,GE⊥平面ABCD,EF⊥ABCD,E,F分别是边AB、CD中点,AC与BD交于O,EG=FH=2,
(1)求证:AB⊥BH;
(2)求二面角C-OH-F的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:关于x的方程x2-ax+a+3=0有实数根,命题q:m-1≤a≤m+1.
(Ⅰ) 若¬p是真命题,求实数a的取值范围;
(Ⅱ) 若p是q的必要非充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某乐园按时段收费,收费标准为:每玩一次不超过1小时收费10元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人参与但都不超过4小时,甲、乙二人在每个时段离场是等可能的.为吸引顾客,每个顾客可以参加一次抽奖活动.
(1)用(10,10)表示甲乙玩都不超过1小时的付费情况,求甲、乙二人付费之和为44元的概率;
(2)抽奖活动的规则是:顾客通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该顾客中奖;若电脑显示“谢谢”,则不中奖,求顾客中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则实数a的范围是(  )
A.[3,+∞)B.(3,+∞)C.[-∞,3]D.[-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆C1与C2的中心在原点,焦点分别在x轴与y轴上,它们有相同的离心率$e=\frac{{\sqrt{2}}}{2}$,并且C2的短轴为C1的长轴,C1与C2的四个焦点构成的四边形面积是$2\sqrt{2}$.
(Ⅰ)求椭圆C1与C2的方程;
(Ⅱ)设P是椭圆C2上非顶点的动点,P与椭圆C1长轴两个顶点A,B的连线PA,PB分别与椭圆C1交于点E,F.
(1)求证:直线PA,PB斜率之积为常数;
(2)直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

查看答案和解析>>

同步练习册答案