精英家教网 > 高中数学 > 题目详情
6.如图所示,建立空间直角坐标系Dxyz,已知正方体ABCD-A1B1C1D1的棱长为1,点M是正方体对角线D1B的中点,点N在棱CC1上.
(1)当2|C1N|=|NC|时,求|MN|;
(2)当点N在棱CC1上移动时,求|MN|的最小值并求此时的N点坐标.

分析 (1)求出M($\frac{1}{2},\frac{1}{2},\frac{1}{2}$),N(0,1,$\frac{2}{3}$),由此能求出|MN|.
(2)当MN是BD1和CC1的公垂线时,|MN|取最小值,由此得到当N是CC1中点时,|MN|取最小值.

解答 解:(1)∵如图所示,建立空间直角坐标系Dxyz,
正方体ABCD-A1B1C1D1的棱长为1,点M是正方体对角线D1B的中点,
点N在棱CC1上,2|C1N|=|NC|,
∴D1(0,0,1),B(1,1,0),M($\frac{1}{2},\frac{1}{2},\frac{1}{2}$),N(0,1,$\frac{2}{3}$),
∴|MN|=$\sqrt{(0-\frac{1}{2})^{2}+(1-\frac{1}{2})^{2}+(\frac{2}{3}-\frac{1}{2})^{2}}$=$\frac{\sqrt{19}}{6}$.
(2)∵点M是正方体对角线D1B的中点,点N在棱CC1上移动时,
∴当MN是BD1和CC1的公垂线时,|MN|取最小值,
∴当N是CC1中点时,|MN|取最小值,
此时N(0,1,$\frac{1}{2}$),|MN|min=$\sqrt{(0-\frac{1}{2})^{2}+(1-\frac{1}{2})^{2}+(\frac{1}{2}-\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$.

点评 本题考查线段长的求法,考查两点间距离的最小值及相应的点的坐标的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在△ABC中,cos(A+B)=(  )
A.cosCB.-cosCC.sinCD.-sinC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD,侧面PAD是边长为2的正 三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形.
(1)求证:PC⊥AD;
(2)求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=2$\sqrt{2}$.
(1)求证:BD⊥平面PAC;
(2)求二面角P-CD-B的大小;
(3)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|f1(x)-f2(x)|,其中幂函数f1(x)的图象过点(2,$\sqrt{2}$),且函数f2(x)=ax+b(a,b∈R).
(1)当a=0,b=1时,写出函数f(x)的单调区间;
(2)设μ为常数,a为关于x的偶函数y=log4[($\frac{1}{2}$)x+μ•2x](x∈R)的最小值,函数f(x)在[0,4]上的最大值为u(b),求函数u(b)的最小值;
(3)若对于任意x∈[0,1],均有|f2(x)|≤1,求代数式(a+1)(b+1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)满足f′(x)-f(x)=2xex,f(0)=1,其中f′(x)为f(x)的导函数,则当x>0时,$\frac{f′(x)}{f(x)}$的最大值为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=x-ex的单调减区间是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C1,抛物线C2的焦点均在x轴上,从两条曲线上各取两个点,将其坐标混合记录于下表中:
x-$\sqrt{2}$2$\sqrt{6}$9
y$\sqrt{3}$-$\sqrt{2}$-13
(1)求椭圆C1和抛物线C2的标准方程;
(2)过椭圆C1右焦点F的直线l与此椭圆相交于A,B两点,若点P为直线x=4上任意一点.
①求证:直线PA,PF,PB的斜率成等差数列;
②若点P在x轴上,设$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],求|$\overrightarrow{PA}$+$\overrightarrow{PB}$|取最大值时的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆的中心是原点O,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,短轴长为2,定点A(2,0).
(Ⅰ)求椭圆方程;
(Ⅱ)过椭圆右焦点F的直线与椭圆交于点M、N,当|MN|最小时,求△AMN的面积.

查看答案和解析>>

同步练习册答案