分析 过B作BE⊥AC于E,由面面垂直的性质可得BE⊥平面DAC,故BE为棱锥的高,底面为△ACD,代入体积公式计算即可求出体积.
解答
解:过B作BE⊥AC于E,∵AB=4,BC=3,∴AC=5,BE=$\frac{AB•BC}{AC}$=$\frac{12}{5}$,
∵平面DAC⊥平面BAC,平面DAC∩平面BAC=AC,BE⊥AC,BE?平面ABC,
∴BE⊥平面DAC,
∴V棱锥D-ABC=V棱锥B-ACD=$\frac{1}{3}$S△ACD•BE=$\frac{1}{3}×\frac{1}{2}×3×4×\frac{12}{5}$=$\frac{24}{5}$.
故答案为$\frac{24}{5}$.
点评 本题考查了面面垂直的性质,棱锥的体积计算,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{8}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{16}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com