精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=({1+\sqrt{3}tanx})cosx,x∈[{0,\frac{π}{2}})$,则f(x)的最大值为2.

分析 由条件利用同角三角函数的基本关系、两角和差的余弦公式化简函数的解析式,再利用余弦函数的值域,求得f(x)的最大值.

解答 解:由题意可得,函数f(x)=cosx+$\sqrt{3}$sinx=2($\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx)=2cos(x-$\frac{π}{3}$),
故函数的最大值为2,
故答案为:2.

点评 本题主要考查同角三角函数的基本关系、两角和差的余弦公式,余弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知矩阵A=$[\begin{array}{l}{1}&{1}\\{1}&{2}\end{array}]$,且AB=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$,则矩阵B=$[\begin{array}{l}{2}&{-1}\\{-1}&{1}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列说法中
①若$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$=$\overrightarrow 0$,则点O是△ABC的重心
②若点O满足:${|{\overrightarrow{OA}}|^2}+{|{\overrightarrow{BC}}|^2}={|{\overrightarrow{OB}}|^2}+{|{\overrightarrow{CA}}|^2}={|{\overrightarrow{OC}}|^2}+{|{\overrightarrow{AB}}|^2}$,则点O是△ABC的垂心.
③若动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}})(λ∈R)$,点P的轨迹一定过△ABC的内心.
④若动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|sinB}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|sinC}})(λ∈R)$,点P的轨迹一定过△ABC的重心.
⑤若动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|cosB}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|cosC}})(λ∈R)$,点P的轨迹一定过△ABC的外心.
其中正确的是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,且a1=2,S3=12.
(1)求数列{an}的通项公式;
(2)设数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和为Tn,求T2015的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知p:x2+4mx+1=0有两个不等的负数根,q:函数f(x)=-(m2-m+1)x在(-∞,+∞)上是增函数.若p或q为真,p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:AE⊥平面PCD;
(3)若直线AC与平面PCD所成的角为30°,求$\frac{CD}{AD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b(a≠b)都是正有理数,$\sqrt{a},\sqrt{b}$都是无理数.
(1)判断$\sqrt{a}•\sqrt{b}$是否可能是有理数,请举例说明;
(2)求证:$\sqrt{a}+\sqrt{b}$不可能是有理数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:
(1)${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-3{π^0}+\frac{37}{48}$;
(2)$\frac{{lg\sqrt{27}+lg8-3lg\sqrt{10}}}{lg1.2}$.

查看答案和解析>>

同步练习册答案