精英家教网 > 高中数学 > 题目详情
1.已知f(x)=x(ex-1)-ax2,若a=$\frac{1}{2}$,求f(x)的单调区间.

分析 求函数的导数,根据函数单调性和导数之间的关系进行求解即可.

解答 解:当a=$\frac{1}{2}$,则f(x)=x(ex-1)-$\frac{1}{2}$x2
则f′(x)=ex-1+xex-x=ex-1+x(ex-1)=(x+1)(ex-1),
由f′(x)=0,得x=-1或x=0,
则由f′(x)>0得x>0或x<-1,此时函数单调递增,
由f′(x)<0得-1<x<0,此时函数单调递减,
即函数f(x)的单调递增区间为为[0,+∞),(-∞,-1],
单调递减区间为[-1,0].

点评 本题主要考查函数单调区间的求解,求函数的导数,利用导数研究函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)的导函数是f′(x)=3x2+2mx+9,f(x)在x=3处取得极值,且f(0)=0
(1)求f(x)的极大值和极小值
(2)设M(x,y)是曲线y=f(x)上的任意一点,当x∈(0,1]时,求直线OM斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,一个靶子由四个同心圆组成,且半径分别为1,3,5,7,规定:击中A、B、C、D区域分别可获得5分、3分、2分、1分,脱靶(即击中最大圆之外的某点)得0分.甲射击时脱靶的概率为0.02,若未脱靶则等可能地击中靶子上的任意一点,求甲射击一次得分的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某校一间办公室有四位老师甲、乙、丙、丁.在某天的某个时段,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印材料.若下面4个说法都是正确的:
①甲不在查资料,也不在写教案;
②乙不在打印材料,也不在查资料;
③丙不在批改作业,也不在打印材料;
④丁不在写教案,也不在查资料.
此外还可确定:如果甲不在打印材料,那么丙不在查资料.根据以上信息可以判断(  )
A.甲在打印材料B.乙在批改作业C.丙在写教案D.丁在打印材料

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}满足a8=2a6+a4,且a2=1,则a5=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知y=2cos2x+5sinx-4($\frac{π}{3}$≤x≤$\frac{5π}{6}$),求其最大值和最小值、并写出取最值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.下列函数哪些是奇函数?哪些是偶函数?哪些既不是奇函数也不是偶函数.
(1)y=1-sinx;
(2)y=-3sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠ACB=90°,EF∥BC,AC=BC=2EF=2,AE=EC=$\sqrt{2}$.
(Ⅰ)求证:AE⊥EF;
(Ⅱ)求平面ABF与平面BDE所成的锐二面角的正切值;
(Ⅲ)若点G在线段DE上,求直线CG与平面ABF所成的角的正弦值的取值范围;并求该正弦值取最大值时,多面体ABCDFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆F1:(x+1)2+y2=r2与圆F2:(x-1)2+y2=(4-r)2(1≤r≤3),当r的值变化时,两圆的公共点的轨迹为曲线E,过F2的直线l与曲线E相交于不同的两点M、N.
(1)求曲线E的方程;
(2)试问△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案