精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)的导函数是f′(x)=3x2+2mx+9,f(x)在x=3处取得极值,且f(0)=0
(1)求f(x)的极大值和极小值
(2)设M(x,y)是曲线y=f(x)上的任意一点,当x∈(0,1]时,求直线OM斜率的最小值.

分析 (1)依题意,f′(3)=0,解得m=-6,由已知可设f(x)=x3-6x2+9x+p,因为f(0)=0,所以p=0,由此能求出f(x)的极大值和极小值.
(2)当x∈(0,1]时,直线OM斜率k=$\frac{f(x)}{x}$=(x-3)2,因为0<x≤1,所以-3<x-3≤-2,则4≤(x-3)2<9,即直线OM斜率的最小值为4.

解答 解:(1)依题意,f′(3)=0,解得m=-6,…(1分)
由已知可设f(x)=x3-6x2+9x+p,
因为f(0)=0,所以p=0,
则f(x)=x3-6x2+9x,导函数f′(x)=3x2-12x+9.…(3分)
列表:

x(-∞,1)1(1,3)3(3,+∞)
f′(x)+0-0+
f(x)递增极大值4递减极小值0递增
由上表可知f(x)在x=1处取得极大值为f(1)=4,f(x)在x=3处取得极小值为f(3)=0.…(8分)
(2)当x∈(0,1]时,直线OM斜率k=$\frac{f(x)}{x}$=(x-3)2
因为0<x≤1,所以-3<x-3≤-2,
则4≤(x-3)2<9,
即直线OM斜率的最小值为4. …(12分)

点评 本题考查导数的应用,考查函数极值的求法,考查实数的取值范围的求法,注意挖掘题设中的隐含条件,合理地进行等价转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(sinθ,-$\frac{1}{2}$),$\overrightarrow{b}$=($\frac{1}{2}$,cosθ),θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值,并求出这时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E⊥平面ABF,则CE与DF的长度之和为(  )
A.1B.$\frac{3}{2}$C.2$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=(x+1)ln(x+1)-x,g(x)=a(ex-x)
(1)求函数f(x)的极值;
(2)若f(x)-x2≤(x+1)g(x)恒成立,求a的取值范围;
(3)证明:$\sum_{k=1}^{n}\frac{ln(1+{k}^{2})}{{k}^{2}}$≥$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=2ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值;
(2)证明:2ln($\frac{x}{2}+1$)-6≤(x+3)(x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x,g(x)=lnx.
(1)求函数h(x)=f(x)-g(x)的极值;
(2)若?a∈(0,+∞),使得函数y=af(x)-g(x)在(0,e]上的最小值是3(其中e为自然对数的底数),试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在如图所示的几何体中,四边形ABCD是矩形,AB=2BC=4,四边形CDEF是等腰梯形,EF∥DC,EF=2,且平面ABCD⊥平面CDEF,AF⊥CF.
(Ⅰ)过BD与AF平行的平面与CF交于点G.求证:G为CF的中点;
(Ⅱ)求二面角B-AF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2011年8月15日,世界羽毛球锦标赛在伦敦落下帷幕,中国队再次包揽全部男女5个单项的冠军,但面对2012年的奥运会,仍不容乐观,从近几年情况看.韩国、印尼一直虎视眈眈,特别是上一届尤伯杯女子团体赛,年轻小将心理负担太大,发挥失常,在决赛中以1:3不敌韩国队,痛失保存了12年之久的尤伯杯,中国男队情况稍好,但英国、泰国正迅速崛起,到时一定会给中国队带来不小的冲击,经预测,2012年奥运会中国羽毛球女队夺得团体冠军的概率为$\frac{2}{3}$,男队夺得团体冠军的概率为$\frac{4}{5}$,设中国羽毛球队夺得伦敦奥运会团体冠军个数为X,求E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=x(ex-1)-ax2,若a=$\frac{1}{2}$,求f(x)的单调区间.

查看答案和解析>>

同步练习册答案