精英家教网 > 高中数学 > 题目详情
已知f(x)=-lnx,g(x)=
1
x
-1(x>0)
(Ⅰ)求F(x)=f(x)-g(x)的极值,并证明:若x1,x2∈(0,+∞)有f(x2)-f(x1)≥f′(x1)(x2-x1
(Ⅱ)设λ1,λ2>0,且λ12=1,x1>0,x2>0,证明:λ1f(x1)+λ2f(x2)≥f(λ1x12x2).若λi>0,xi>0,(i=1,2,…n),由上述结论猜想一个一般性结论(不需证明).
(Ⅲ)证明:若ai>0(i=1,2,…n),则a1 a1a2 a2…an an(
a1+a2+…+an
n
)a1+a2+…+an
考点:利用导数求闭区间上函数的最值,利用导数研究函数的极值
专题:导数的综合应用
分析:(Ⅰ)利用导数求函数的极值即可,F(x)max=F(0)=0;∴当x>0时,f (x)≤g(x) 恒成立,即 x>0时 lnx≥1-
1
x
恒成立,利用该结论即可证得原命题成立;
(Ⅱ)利用(Ⅰ)的结论证明即可得出结论成立;
(Ⅲ)利用(Ⅱ)的结论结合对数的运算性质即可得出结论.
解答: 解:(1)F(x)=-lnx-
1
x
+1,则F′(x)=
1-x
x2

当x∈(0,1)时F′(x)>0,x∈(1,+∞)时F′(x)<0
∴F(x)在(0,1)递增,在(1,+∞)递减,
∴当x=1时,函数有极大值为F(1)=0,
∴F(x)max=F(0)=0;∴当x>0时,f (x)≤g(x) 恒成立,即 x>0时 lnx≥1-
1
x
恒成立.
∴f (x2)-f (x1)=ln 
x1
x2
≥1-
x2
x1
=-
1
x1
(x2-x1)=f′(x1)(x2-x1
(2)证明:设λ1>0,λ2>0且λ12=1     
令x31 x12 x2,则x3>0且x1-x32(x1-x2)  x2-x31(x2-x1
由(1)知f (x1)-f (x3)≥f′(x3)( x1-x3)=λ2 f′(x3)( x1-x2) …①
f (x2)-f (x3)≥f′(x3)( x2-x3)=λ1 f′(x3)( x2-x1)  …②
①×λ1+②×λ2,得
λ1 f (x1)+λ2 f (x2)-(λ12)f (x3)≥λ1λ2 f′(x3) ( x1-x2)+λ1λ2 f′(x3)( x2-x1)=0
∴λ1 f (x1)+λ2 f (x2)≥(λ12)f (x3)=f (x3)=f(λ1 x12 x2
猜想:λi>0,xi>0(i=1,2,…n)且λ12+…+λn=1时有
λ1 f (x1)+λ2 f (x2)+…+λn f (xn)≥f(λ1 x12 x2+…+λn xn
(3)证明:令λi=
ai
a1+a2+…+an
xi=
1
ai
,(i=1,2,…n)
则有λ12+…+λn=1           
由猜 想结论得:
a1
a1+a2+…+an
lna1
+
a2
a1+a2+…+an
lna2
+…+
an
a1+a2+…+an
lnan

≥-ln(
a1
a1+a2+…+an
1
a1
+
a2
a1+a2+…+an
1
a2
+…+
an
a1+a2+…+an
1
an

=-ln
n
a1+a2+…+an
=ln
a1+a2+…+an
n

∴a1lna1+a2lna2+…+anlnan≥(a1+a2+…+an) ln
a1+a2+…+an
n

a1a1a2a2anan(
a1+a2+…+an
n
)a1+a2+…+an
点评:本题主要考查利用导数研究函数的极值问题及利用导数证明不等式成立问题,考查学生的问题的等价转化思想的运用能力及计算求解能力,逻辑性很强,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x与y之间的一组数据为
x 1 2 3 4
y 1 5-a 3 7+a
则y与x的回归直线方程
y
=
b
x+
a
必过定点(  )
A、(4,
3
2
B、(
5
2
,4)
C、(6,8)
D、(
5
2
,4+a)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2+ax+b的图象在点P(0,f(0))处的切线方程为y=3x-2.
(1)求实数a,b的值;   
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若对任意n∈N*,数列{an}的前n项和Sn都为完全平方数,则称数列{an}为“完全平方数列”;特别的,若存在n∈N*,使数列{an}的前n项和Sn为完全平方数,则称数列{an}为“部分平方数列”.
(1)若数列{an}为“部分平方数列”,且an=
2,      n=1
2n-1, n≥2
(n∈N*),求使数列{an}的前n项和Sn为完全平方数列时n的值;
(2)若数列{bn}的前n项和Tn=(n-t)2(其中t∈N*),那么数列{|bn|}是否为“完全平方数列”?若是,求出t的值;若不是,请说明理由;
(3)试求所有为“完全平方数列”的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学校园内原有一块四分之一圆面形状的草坪AMN(图1),其中AM=AN=8m,∠MAN=90°.今年暑假整治校园环境时,为美观起见,学校设计将原有草坪扩大,具体实施方案是:从圆弧上一点P作圆弧的切线BD,分别与AM,AN的延长线交于B,D,并以AB,AD为邻边构造矩形ABCD,再以C为圆心制作一块与AMN形状相同的草坪,构成矩形绿地ABCD(图2).
(1)求矩形绿地ABCD占地面积的最小值;
(2)若由于地形条件限制,使得矩形一边AB的长度不能超过10m,求此时矩形绿地ABCD占地面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:x2+12x+20≤0,条件q:1-m<x<1+m(m>0).
(1)求条件p中x的取值范围;
(2)若¬p是q的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=xlnx
(1)求f(x)的单调区间;
(2)求f(x)在区间[
1
8
1
2
]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,AD=2AB=2,∠BAD=60°,M、N分别是对角线BD、AC上的点,AC、BD相交于点O,已知BM=
1
3
BO,ON=
1
3
OC.设向量
AB
=
a
AD
=
b

(1)试用
a
b
表示
MN

(2)求|
MN
|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x>1,y>1,且logx2+logy4=1,则log2(xy)的最小值为
 

查看答案和解析>>

同步练习册答案