13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ³¤¶Èµ¥Î»Ïàͬ£¬½¨Á¢¼«×ø±êϵ£¬ÒÑÖªÔ²AµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+2cos¦È\\ y=-1+2sin¦È\end{array}\right.$£¨ÆäÖЦÈΪ²ÎÊý£©£¬Ô²BµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£®
£¨¢ñ£©·Ö±ðд³öÔ²AÓëÔ²BµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÅжÏÁ½Ô²µÄλÖùØÏµ£¬ÈôÁ½Ô²Ïཻ£¬ÇóÆä¹«¹²ÏÒ³¤£®

·ÖÎö £¨¢ñ£©Ô²AµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+2cos¦È\\ y=-1+2sin¦È\end{array}\right.$£¨ÆäÖЦÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÔ²AµÄÆÕͨ·½³Ì£®Ô²BµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬¼´¦Ñ2=2¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÀûÓÃÁ½Ô²µÄÔ²ÐľàÀëÓë°ë¾¶µÄºÍ²î°ë¾¶¼´¿ÉÅжϳöÁ½Ô²Ïཻ£®Á½¸öÔ²µÄ·½³ÌÏà¼õ¿ÉµÃ¹«¹²ÏÒËùÔÚÖ±Ïß·½³Ì£¬ÀûÓÃÏÒ³¤¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨¢ñ£©Ô²AµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+2cos¦È\\ y=-1+2sin¦È\end{array}\right.$£¨ÆäÖЦÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÔ²A£º£¨x-1£©2+£¨y+1£©2=4£®¿ÉµÃÔ²ÐÄA£¨1£¬-1£©£¬°ë¾¶R=2£®
Ô²BµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬¼´¦Ñ2=2¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÔ²B£ºx2+y2-2y=0£¬Æ½·½¿ÉµÃ£ºx2+£¨y-1£©2=1£¬¿ÉµÃÔ²ÐÄB£¨0£¬1£©£¬°ë¾¶r=1£®
£¨¢ò£©¡ß|AB|=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$£¬¶øR-r=1£¬R+r=3£¬
$1£¼\sqrt{5}$£¼3£¬¡àÁ½Ô²Ïཻ£¬
Á½¸öÔ²µÄ·½³ÌÏà¼õ¿ÉµÃ£ºx-2y+1=0£®
¡àÆä¹«¹²ÏÒ³¤=2$\sqrt{{2}^{2}-£¨\frac{1+2+1}{\sqrt{5}}£©^{2}}$=$\frac{{4\sqrt{5}}}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±êÓëÖ±½Ç×ø±ê»¥»¯µÄ¹«Ê½¡¢Ô²µÄ±ê×¼·½³Ì¡¢Á½Ô²ÏཻÏÒ³¤¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖʵÏß»­³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{7¦Ð}{2}$B£®4¦ÐC£®$\frac{9¦Ð}{2}$D£®5¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªx¡ÊR£¬Ôò¡°|x-3|-|x-1|£¼2¡±ÊÇ¡°x£¾3¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=ex-1-$\frac{ax}{x-1}$£¬a¡ÊR£®
£¨1£©Èôº¯Êýg£¨x£©=£¨x-1£©f£¨x£©ÔÚ£¨0£¬1£©ÉÏÓÐÇÒÖ»ÓÐÒ»¸ö¼«Öµµã£¬ÇóaµÄ·¶Î§£»
£¨2£©µ±a¡Ü-1ʱ£¬Ö¤Ã÷£ºf£¨x£©£¼0¶ÔÈÎÒâx¡Ê£¨0£¬1£©³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¬Ö±Ïßy=kx£¨k£¾0£©ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Èô$AF¡ÍBF£¬¡ÏFAB¡Ê£¨0£¬\frac{¦Ð}{12}]$£¬ÔòCµÄÀëÐÄÂÊȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$[\frac{{\sqrt{2}}}{2}£¬1£©$B£®$[\frac{{\sqrt{6}}}{3}£¬1£©$C£®$[\frac{{\sqrt{3}}}{3}£¬1£©$D£®$[\frac{2}{3}£¬1£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒa1=1£¬an+1=2Sn+3£¬ÔòͨÏîan=$\left\{\begin{array}{l}{1£¬n=1}\\{5¡Á{3}^{n-2}£¬n¡Ý2}\end{array}\right.$£®£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªÀëÐÄÂÊΪeµÄË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{7}=1$£¬ÆäÓëÍÖÔ²$\frac{x^2}{25}+\frac{y^2}{9}=1$µÄ½¹µãÖØºÏ£¬ÔòeµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®$\frac{4\sqrt{23}}{23}$C£®$\frac{4}{3}$D£®$\frac{\sqrt{23}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¡÷ABCÈýÄÚ½ÇA£¬B£¬CËù¶Ô±ß·Ö±ðΪa£¬b£¬c£®
£¨¢ñ£©Èôa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬Çó½ÇBµÄ×î´óÖµ£»
£¨¢ò£©Èôa2£¬b2£¬c2³ÉµÈ²îÊýÁУ¬Çó½ÇBµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ö±Ïß$\sqrt{2}$ax+by=1ÓëÔ²x2+y2=1ÏཻÓÚA¡¢BÁ½µã£¨ÆäÖÐa¡¢bÊÇÕýʵÊý£©£¬ÇÒ¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ¨OÊÇ×ø±êÔ­µã£©£¬Ôò$\frac{1}{ab}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{2}$+1C£®2D£®$\sqrt{2}$-1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸