精英家教网 > 高中数学 > 题目详情
3.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积是(  )
A.$\frac{7π}{2}$B.C.$\frac{9π}{2}$D.

分析 由三视图可知:该几何体为一个$\frac{1}{4}$球与一个圆柱组成的几何体.

解答 解:由三视图可知:该几何体为一个$\frac{1}{4}$球与一个圆柱组成的几何体.
该几何体的表面积=$\frac{3}{2}×π×{1}^{2}$+2π×1×1+$\frac{1}{4}×4π×{1}^{2}+$$\frac{1}{2}×π×{1}^{2}$=5π.
故选:D.

点评 本题考查了球与圆柱的三视图、面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$cos2x-2cos2(x+$\frac{π}{4}$)+1.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设(1+$\frac{1}{2}$x)m=a0+a1x+a2x2+a3x3+…+amxm,若a0,a1,a2成等差数列.
(Ⅰ)求展开式的中间项;
(Ⅱ)求展开式中所有含x奇次幂的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3-2x2+3x(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在(0,+∞)上的函数f(x)满足x2f′(x)+1>0,f(2)=$\frac{9}{2}$,则不等式f(lgx)<$\frac{1}{lgx}$+4的解集为(  )
A.(10,100)B.(0,100)C.(100,+∞)D.(1,100)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若有一个线性回归方程为 $\stackrel{∧}{y}$=-2.5x+3,则变量x增加一个单位时(  )
A.y平均减少2.5个单位B.y平均减少0.5个单位
C.y平均增加2.5个单位D.y平均增加0.5个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若?x∈D,g(x)≤f(x)≤h(x),则称函数f(x)为函数g(x)到函数h(x)在区间D上的“随性函数”.已知函数f(x)=kx,g(x)=x2-2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在区间[1,e]上的“随性函数”,则实数k的取值范围是[e-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.i是虚数单位,若实数x,y满足(1+i)x+(1-i)y=2,z=$\frac{x+i}{y-i}$,则复数z的虚部等于(  )
A.1B.0C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴,长度单位相同,建立极坐标系,已知圆A的参数方程为$\left\{\begin{array}{l}x=1+2cosθ\\ y=-1+2sinθ\end{array}\right.$(其中θ为参数),圆B的极坐标方程为ρ=2sinθ.
(Ⅰ)分别写出圆A与圆B的直角坐标方程;
(Ⅱ)判断两圆的位置关系,若两圆相交,求其公共弦长.

查看答案和解析>>

同步练习册答案