精英家教网 > 高中数学 > 题目详情
是椭圆的两个焦点,是椭圆上的点,且,则的面积为
A.4B.6C.D.
A

设丨PF2丨=x,则丨PF1丨=2x,依题意,丨PF1丨+丨PF2丨=x+2x=3x=2a=6,
∴x=2,2x=4,
即丨PF2丨=2,丨PF1丨=4,又|F1F2丨=2=2
+=
∴△PF1F2为直角三角形,
∴△PF1F2的面积为S=丨PF1丨丨PF2丨=×2×4=4.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左右焦点为F1,F2,点P-在椭圆上,若P,F1,F2是一个直角三角形的三个顶点,则点P到x轴的距离是          (   )
A.B.3C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是等腰直角三角形,则这个椭圆的离心率是(    )
A、          B、           C、         D、     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的右焦点与抛物线的焦点重合,则
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的左右焦点分别为,离心率,直线经过椭圆的左焦点.
(1)求该椭圆的方程;
(2)若该椭圆上有一点满足:,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆()的左焦点轴的垂线交椭圆于两点,为右焦点,若为等边三角形,则椭圆的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆过点,且点轴上的射影恰为椭圆的一个焦点
(Ⅰ)求椭圆的方程;
(Ⅱ)过作两条倾斜角互补的直线与椭圆分别交于两点.试问:四边形能否为平行四边形?若能,求出直线的方程;否则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,其长轴长是短轴长的2倍,右准线方程为x =
(1)求该椭圆方程,
(2)如过点(0,m),且倾斜角为的直线L与椭圆交于A、B两点,当△AOB(O为原点)面积最大时,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)如图,已知椭圆:+=1(a>b>0)的长轴AB长为4,离心率e=,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线于点M,N为的中点.
(1)求椭圆的方程;
(2)证明:Q点在以为直径的圆上;
(3)试判断直线QN与圆的位置关系.

查看答案和解析>>

同步练习册答案