精英家教网 > 高中数学 > 题目详情
2.下列命题中正确的是(  )
A.平行于圆锥的一条母线的截面是等腰三角形
B.平行于圆台的一条母线的截面是等腰梯形
C.过圆锥顶点的截面是等腰三角形
D.过圆台底面中心的一个截面是等腰梯形

分析 根据旋转体的结构特征和圆锥曲线的定义判断.

解答 解:若截面平行于旋转体的母线,则截面边缘为圆锥曲线,故A,B,D错误,
故选C.

点评 本题考查了圆锥曲线的定义,旋转体的结构特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,抛物线C:y2=8x的焦点为F,椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,离心率为$\frac{1}{2}$,且F为线段OA的中点,O为坐标原点.
(1)求椭圆C2的标准方程;
(2)过A点作直线l交C1于B,C两点,求△OBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的单调区间:y=cos($\frac{1}{2}$x+$\frac{π}{3}$),x∈[-2π,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点P(a,4)在抛物线C:x2=2py(p>0)上,P点到抛物线C的焦点F的距离为5
(1)求抛物线C的方程;
(2)已知圆E:x2+y2=2y,过圆心E作直线l与圆E和抛物线C自左而右依次交于A、B、C、D,如果|AB|+|CD|=2|BC|,求直线l的方程:
(3)过点Q(2,4)的任一直线(不过P点)与抛物线C交于A、B两点,直线AB与直线y=x-4交于点M,记直线PA、PB、PM的斜率分别为k1、k2、k3.问是否存在实数λ,使得$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$=$\frac{λ}{{k}_{3}}$,若存在,求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的导数:
(1)y=sin$\frac{π}{3}$;
(2)y=5x
(3)y=$\frac{1}{{x}^{3}}$;
(4)y=$\root{4}{{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:
(1)(sinα+cosα)2+(sinα-cosα)2
(2)sin2α(1+$\frac{1}{tan^2α}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.不求三角函数的值,确定下列三角函数的符号:
(1)sin(-95°);
(2)sec$\frac{17π}{6}$;
(3)cos(-180°);
(4)tan($\frac{17}{8}$π);
(5)sin(-$\frac{4}{3}$π);
(6)cot560°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.当-$\frac{π}{2}$≤x≤$\frac{π}{2}$时,函数f(x)=2sin(x+$\frac{π}{3}$)有(  )
A.最大值1,最小值-1B.最大值1,最小值-$\frac{1}{2}$
C.最大值2,最小值-2D.最大值2,最小值-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某地区有100名学员参加交通法规考试,考试成绩的频率分布直方图如图所示.其中成绩分组区间是:第1组:[75,80),第2组:[80,85),第3组:[85,90),第4组:[90,95),第5组:[95,100].
(1)求图中a的值,并估计此次考试成绩的中位数(结果保留一位小数);
(2)在第2、4小组中用分层抽样的方法抽取5人,再从这5人中随机选取2人进行面试,求至少有一人来自第2小组的概率.

查看答案和解析>>

同步练习册答案