精英家教网 > 高中数学 > 题目详情
5.函数f(x)=$\frac{ln(x-1)}{{\sqrt{2-x}}}$的定义域为(  )
A.(1,2)B.(1,2]C.(-∞,2]D.(1,+∞)

分析 根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.

解答 解:∵函数f(x)=$\frac{ln(x-1)}{{\sqrt{2-x}}}$,
∴$\left\{\begin{array}{l}{x-1>0}\\{2-x>0}\end{array}\right.$,
解得1<x<2,
∴f(x)的定义域为(1,2).
故选:A.

点评 本题考查了根据函数解析式求定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow a,\overrightarrow b$为平面向量,$\overrightarrow a=(2,-1)$,2$\overrightarrow a+\overrightarrow b$=(1,2),
(1)求$\overrightarrow b$;     
(2)求向量$\overrightarrow b$在$\overrightarrow a$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.与向量$\vec a=({3,4})$,$\vec b=({4,3})$的夹角相等的单位向量是(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)或($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=$\sqrt{\frac{3-x}{x}}$定义域为A;g(x)=log2(x-m)(x-m+2)定义域为B.
(1)当m=1时,求A∩∁RB;
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点O是△ABC所在平面上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,则点O为△ABC的(  )
A.外心B.内心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow a$=(1,1,0),$\overrightarrow b$=(-1,0,2),且$k\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$互相垂直,则k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\vec a$=(4,2),$\vec b$=(-1,2),$\vec c$=(2,m).
(1)若$\vec a$•$\vec c$<m2,求实数m的取值范围;
(2)若向量$\vec a+\vec c$与$\vec b$平行,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知R上的奇函数f(x),f(x+2)=f(x),x∈[0,1]时f(x)=1-|2x-1|,定义:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),n≥2,n∈N,则f3(x)=$\frac{9}{8(x-1)}$在[-1,3]内所有不等实根的和为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=eax(a∈R).
(I)当a=-2时,求函数g(x)=x2f(x)在区间(0,+∞)内的最大值;
(Ⅱ)若函数h(x)=$\frac{{x}^{2}}{f(x)}$-1在区间(0,16)内有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案