精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若$cosA=\frac{sinB}{sinC}$,则△ABC的形状为(  )
A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形

分析 利用两角和公式对原等式整理求得cosA的值,判断出三角形的形状.

解答 解:整理原等式得sinCcosA=sin(A+C)=sinAcosC+cosAsinC,
∴sinCcosA=0,
∵sinC≠0,
∴cosA=0,A=$\frac{π}{2}$,
∴三角形为直角三角形,
故选B.

点评 本题主要考查了两角和公式的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知点P在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上,F1,F2是这条双曲线上的两个焦点,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,且△F1PF2的三条边的长度成等差数列,则此双曲线的离心率的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+ax2+bx+c的图象经过原点,且在x=1处取得极大值.
(Ⅰ)求实数a的取值范围;
(Ⅱ)若方程f(x)=-$\frac{{{{({2a+3})}^2}}}{9}$恰好有两个不同的根,求f(x)的解析式;
(Ⅲ)对于(2)中的函数f(x),若对于任意实数α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α的终边上一点P落在直线y=2x上,则sin2α=(  )
A.$-\frac{{2\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+ax+b满足f(-1)=-2,且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)关于x的不等式f(x)>2x|x-t|
①若t=1,求上述不等式的解集;
②若上述不等式对任意x∈[$\frac{1}{2}$,2]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某算法的程序框图如图所示,若输入量S=1,a=5,则输出S=20.(考点:程序框图)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线l的参数方程是$\left\{\begin{array}{l}x=1+2t\\ y=2-t\end{array}\right.\;\;(t∈R)$,则l的方向向量$\overrightarrow d$可以是$({1,-\frac{1}{2}})$或(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,已知a1=-1,an+an+1+4n+2=0.
(1)若bn=an+2n.求证:{bn}是等比数列,并写出{bn}的通项公式.
(2)求{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成.该八边形的面积为(  )
A.2sin α-2cos α+2B.sin α-$\sqrt{3}$cos α+3C.3sin α-$\sqrt{3}$cos α+1D.2sin α-cos α+1

查看答案和解析>>

同步练习册答案