精英家教网 > 高中数学 > 题目详情
20.运行右边的程序框图,输出的结果是$\frac{20}{21}$.

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量s=1-$\frac{1}{3}$$+\frac{1}{3}-$$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{19}$-$\frac{1}{21}$=
1-$\frac{1}{21}$=$\frac{20}{21}$的值.
故答案为:$\frac{20}{21}$.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.定义在(0,+∞)上的函数y=f(x)的反函数为y=f-1(x),若g(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≤0}\\{f(x),x>0}\end{array}\right.$为奇函数,则f-1(x)=2的解为$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=e|x|-cosx的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是单调递减的,则实数a的取值范围是(  )
A.a≤-3B.a≥-3C.a≤5D.a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设某物体一天中的温度T是时间t的函数,已知T(t)=t3+at2+bt+c,其中温度的单位是℃,时间的单位是小时,规定中午12:00相应的t=0,中午12:00以后相应的t取正数,中午12:00以前相应的t取负数(例如早上8:00对应的t=-4,下午16:00相应的t=4),若测得该物体在中午12:00的温度为60℃,在下午13:00的温度为58℃,且已知该物体的温度在早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度T关于时间t的函数关系式;
(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算8${\;}^{-\frac{2}{3}}$+2lg2-lg$\frac{1}{25}$的值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数f(x)=$\sqrt{3}$sin$\frac{x}{2}$-cos$\frac{x}{2}$的图象向右平移$\frac{2π}{3}$个单位长度得到函数y=g(x)的图象,则函数y=g(x)的一个单调递减区间是(  )
A.(-$\frac{π}{4}$,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x289115
y1288710
(1)求y关于x的回归方程$\hat y=\hat bx+\hat a$;
(2)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.
(附:回归方程$\hat y=\hat bx+\hat a$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是从甲、乙两品种的棉花中各抽测了10根棉花的纤维长度(单位:mm)所得数据如图茎叶图,记甲、乙两品种棉花的纤维长度的平均值分别为${\overline x_甲}$与${\overline x_乙}$,标准差分别为s与s,则下列说法不正确的是(  )
A.${\overline x_甲}<{\overline x_乙}$B.s>s
C.乙棉花的中位数为325.5mmD.甲棉花的众数为322mm

查看答案和解析>>

同步练习册答案