精英家教网 > 高中数学 > 题目详情
15.已知抛物线C:y2=2px(p>0)上一点A(4,m)到其焦点的距离为$\frac{17}{4}$,则p的值是$\frac{1}{2}$.

分析 通过点A(4,m)到其焦点的距离为$\frac{17}{4}$,利用抛物线的定义,求解即可.

解答 解:∵抛物线方程为y2=2px,
∴抛物线焦点为F($\frac{p}{2}$,0),准线方程为x=-$\frac{p}{2}$,
又∵点A(4,m)到其焦点的距离为$\frac{17}{4}$,
∴根据抛物线的定义,得4+$\frac{p}{2}$=$\frac{17}{4}$,
∴p=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题给出一个特殊的抛物线,在已知其上一点到焦点距离的情况下,求准线方程.着重考查了抛物线的定义和标准方程,以及抛物线的基本概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{S_n}{T_n}$=$\frac{3n-1}{2n+3}$,则$\frac{a_7}{b_7}$=(  )
A.$\frac{20}{17}$B.$\frac{38}{29}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2sin(2x+$\frac{π}{3}}$),g(x)=mcos(2x-$\frac{π}{6}}$)-2m+3>0,m>0,对任意x1∈[0,$\frac{π}{4}}$],存在x2∈[0,$\frac{π}{4}}$],使得g(x1)=f(x2)成立,则实数m的取值范围是$[{1,\frac{4}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|y=lg(x-1)},B={y|y2-2y-3≤0},则A∩B=(  )
A.(1,3)B.[1,3)C.[1,3]D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=e1+|x|-$\frac{1}{{1+{x^4}}}$,则使得f(2x)<f(1-x)成立的x的取值范围是(  )
A.$(-1,\frac{1}{3})$B.$(-∞,\frac{1}{3})$C.(-∞,-1)D.$(-\frac{1}{3},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,点M,N分别是正方体ABCD-A1B1C1D1的棱BC,CC1的中点,则异面直线B1D1和MN所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的内角A,B,C所对的边分别为a,b,c,sinB+sinC=$\frac{1}{R}$(其中R为△ABC的外接圆的半径)且△ABC的面积S=a2-(b-c)2
(1)求tanA的值;
(2)求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设U=R,A={x|x<2},B={x|x>m},若∁UA⊆B,则实数m的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.与函数y=x(x≥0)相等的函数是(  )
A.y=$\sqrt{{x}^{2}}$B.y=$\root{3}{{x}^{3}}$C.y=($\sqrt{x}$)2D.y=$\frac{{x}^{2}}{x}$

查看答案和解析>>

同步练习册答案